Plant Gene Seeker -PGS
7.2K views | +0 today
Plant Gene Seeker -PGS
Absolutely Fascinated for plant & genomes
Curated by Andres Zurita
Your new post is loading...
Your new post is loading...
Scooped by Andres Zurita
Scoop.it!

Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis

Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

How cells regulate their dimensions is a long-standing question [1 and 2]. In fission and budding yeast, cell-cycle progression depends on cell size, although it is still unclear how size is assessed [3, 4 and 5]. In animals, it has been suggested that cell size is modulated primarily by the balance of external signals controlling growth and the cell cycle [1], although there is evidence of cell-autonomous control in cell cultures [6, 7, 8 and 9]. Regardless of whether regulation is external or cell autonomous, the role of cell-size control in the development of multicellular organisms remains unclear. Plants are a convenient system to study this question: the shoot meristem, which continuously provides new cells to form new organs, maintains a population of actively dividing and characteristically small cells for extended periods [10]. Here, we used live imaging and quantitative, 4D image analysis to measure the sources of cell-size variability in the meristem and then used these measurements in computer simulations to show that the uniform cell sizes seen in the meristem likely require coordinated control of cell growth and cell cycle in individual cells. A genetically induced transient increase in cell size was quickly corrected by more frequent cell division, showing that the cell cycle was adjusted to maintain cell-size homeostasis. Genetically altered cell sizes had little effect on tissue growth but perturbed the establishment of organ boundaries and the emergence of organ primordia. We conclude that meristem cells actively control their sizes to achieve the resolution required to pattern small-scale structures.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The TOR Complex: An Emergency Switch for Root Behavior

The TOR Complex: An Emergency Switch for Root Behavior | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Target of Rapamycin (TOR) kinase is known to be a controller of cell growth and ageing, which determines the fine balance between growth rates and energy availabilities. It has been reported that many eukaryotes express TOR genes. In plants, TOR signaling modifies growth and development in response to a plant’s energy status. An example of TOR action can be found in the root apices, which are active organs that explore the soil environment via vigorous growth and numerous tropisms. The exploratory nature of root apices requires a large energy supply for signaling, as well as for cell division and elongation. In the case of negative tropisms, roots must respond quickly to avoid patches of unfavorable soil conditions, again by consuming precious energy reserves. Here we review the current findings on TOR signaling in plants and animals, and propose possible roles of this important complex in driving plant root negative tropisms, particularly during light escape and salt avoidance behavior.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Friends or foes? Emerging insights from fungal interactions with plants

Friends or foes? Emerging insights from fungal interactions with plants | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant–fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant–fungal interactions.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.

Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE)2. Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

ABA Regulates Subcellular Redistribution of OsABI-LIKE2, a Negative Regulator in ABA Signaling, to Control Root Architecture and Drought Resistance in Oryza sativa

ABA Regulates Subcellular Redistribution of OsABI-LIKE2, a Negative Regulator in ABA Signaling, to Control Root Architecture and Drought Resistance in Oryza sativa | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

The phytohormone ABA is a key stress signal in plants. Although the identification of ABA receptors led to significant progress in understanding the Arabidopsis ABA signaling pathway, there are still many unsolved mysteries regarding ABA signaling in monocots, such as rice. Here, we report that a rice ortholog of AtABI1 and AtABI2, named OsABI-LIKE2(OsABIL2), plays a negative role in rice ABA signaling. Overexpression of OsABIL2 not only led to ABA insensitivity, but also significantly altered plant developmental phenotypes, including stomatal density and root architecture, which probably caused the hypersensitivity to drought stress. OsABIL2 interacts with OsPYL1, SAPK8 and SAPK10 both in vitro and in vivo, and the phosphatase activity of OsABIL2 was repressed by ABA-bound OsPYL1. However, unlike many other solely nuclear-localized clade A type 2C protein phosphatases (PP2Cs), OsABIL2 is localized in both the nucleus and cytosol. Furthermore, OsABIL2 interacts with and co-localized with OsPYL1 mainly in the cytosol, and ABA treatment regulates the nucleus–cytosol distribution of OsABIL2, suggesting a different mechanism for the activation of ABA signaling. Taken together, this study provides significant insights into rice ABA signaling and indicates the important role of OsABIL2 in regulating root development.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids

Andres Zurita's insight:

Hybrids are extensively used in agriculture to deliver increases in crop yields, yet the molecular basis of their superior performance (heterosis) is not well understood. We report that some Arabidopsis F1 hybrids show changes to salicylic acid- and auxin-regulated defense and stress response gene expression. These changes could be important for generating the greater growth of some hybrids given the antagonistic relationship between plant growth and defense responses. Hybrids showing different levels of heterosis have changes in the salicylic acid- and auxin-regulated pathways that correlate with differences in the enhanced leaf growth. The larger leaves, and thus greater capacity for energy production, support the increased growth vigor and seed yields of the hybrids.

 
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut

Andres Zurita's insight:

Legume crops such as chickpea, pigeonpea and groundnut, mostly grown in marginal environments, are the major source of nutrition and protein to the human population in Asia and Sub-Saharan Africa. These crops, however, have a low productivity, mainly due to their exposure to several biotic and abiotic stresses in the marginal environments. Until 2005, these crops had limited genomics resources and molecular breeding was very challenging. During the last decade (2005–2015), ICRISAT led demand-driven innovations in genome science and translated the massive genome information in breeding. For instance, large-scale genomic resources including draft genome assemblies, comprehensive genetic and physical maps, thousands of SSR markers, millions of SNPs, several high-throughput as well as low cost marker genotyping platforms have been developed in these crops. After mapping several breeding related traits, several success stories of translational genomics have become available in these legumes. These include development of superior lines with enhanced drought tolerance in chickpea, enhanced and pyramided resistance to Fusarium wilt and Ascochyta blight in chickpea, enhanced resistance to leaf rust in groundnut, improved oil quality in groundnut and utilization of markers for assessing purity of hybrids/parental lines in pigeonpea. Some of these stories together with future prospects have been discussed.

 
 
more...
No comment yet.
Rescooped by Andres Zurita from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

Soils help to combat and adapt to climate change

Soils help to combat and adapt to climate change | Plant Gene Seeker -PGS | Scoop.it

Via Mary Williams
more...
No comment yet.
Suggested by Eshan Sharma
Scoop.it!

Emerging Roles of Auxin in Abiotic Stress Responses - Springer

Emerging Roles of Auxin in Abiotic Stress Responses - Springer | Plant Gene Seeker -PGS | Scoop.it

Intensive investigations during the past two decades have helped in elucidation of auxin perception and signal transduction mechanisms operative in plants. In addition to its primary role in regulating plant development, several studies in recent years have provided unflinching evidence for the involvement of auxin in abiotic stress responses. Functional genomics studies and genome-wide expression analysis have revealed altered expression of auxin-responsive genes, such as Aux/IAA, GH3, SAURs, and ARFs, under abiotic stress conditions. Variations in endogenous levels of auxin at global and local levels under various abiotic stress conditions have been associated with phenotypic changes and provided intriguing evidences regarding its role in response to environmental changes. Modulation of reactive oxygen species (ROS) levels in response to exogenous auxin as well as to drought, salinity, and ABA have indicated towards a complex relationship network between auxin, ROS, and abiotic stresses in plants. The advent of recent functional genomics technologies has led to identification of several candidate genes that may modulate crosstalk between auxin and abiotic stresses. This chapter discusses auxin homeostasis, signal transduction mechanisms, and how these processes are modulated under abiotic stresses, thus emphasizing on the emerging roles of auxin as a key integrator of abiotic stress pathways and plant development.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis

The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

The length of root epidermal cells and their patterning into files of hair-bearing and non-hair cells are genetically determined but respond with high plasticity to environmental cues. Limited phyto-availability of the essential mineral nutrient phosphate (Pi) increases the number of root hairs by longitudinal shortening of epidermal cells and by reprogramming the fate of cells in positions normally occupied by non-hair cells. Through analysis of the root morphology and transcriptional profiles from transgenic Arabidopsis lines with altered expression of the histone deacetylase HDA19, we show that in an intricate interplay of Pi availability and intrinsic factors, HDA19 controls the epidermal cell length, probably by altering the positional bias that dictates epidermal patterning. In addition, HDA19 regulates several Pi-responsive genes that encode proteins with important regulatory or metabolic roles in the acclimation to Pi deficiency. In particular, HDA19 affects genes encoding SPX (SYG1/Pho81/XPR) domain-containing proteins and genes involved in membrane lipid remodeling, a key response to Pi starvation that increases the free Pi in plants. Our data add a novel, non-transcriptionally regulated component of the Pi signaling network and emphasize the importance of reversible post-translational histone modification for the integration of external signals into intrinsic developmental and metabolic programs.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Discovering New Biology through Sequencing of RNA

Discovering New Biology through Sequencing of RNA | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Sequencing of RNA (RNA-Seq) was invented approximately 1 decade ago and has since revolutionized biological research. This update provides a brief historic perspective on the development of RNA-Seq and then focuses on the application of RNA-Seq in qualitative and quantitative analyses of transcriptomes. Particular emphasis is given to aspects of data analysis. Since the wet-lab and data analysis aspects of RNA-Seq are still rapidly evolving and novel applications are continuously reported, a printed review will be rapidly outdated and can only serve to provide some examples and general guidelines for planning and conducting RNA-Seq studies. Hence, selected references to frequently update online resources are given.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Researchers Identify New Factors That Guide Organization of Plant Roots

Researchers Identify New Factors That Guide Organization of Plant Roots | Plant Gene Seeker -PGS | Scoop.it
Transcriptional control of tissue formation throughout root development
Andres Zurita's insight:

As the root of a growing plant pushes its way through soil, its cells have a lot of organizing to do. New cells must take on the appropriate identities and positions to form distinct layers of tissue that give the root its structure, protect it from the environment, and ensure that it can properly transport materials to and from the rest of the plant.

Howard Hughes Medical Institute scientists have now identified a set of proteins that plays a surprisingly broad role in guiding this tissue formation. The factors, known as the BIRDs, help a root maintain its organization as it grows, guiding several distinct steps in the development of two interior layers of tissue. The study was led by Philip Benfey, an HHMI-Gordon and Betty Moore Foundation investigator at Duke University. Benfey and his colleagues published their findings on October 23, 2015, in the journal Science.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Extracting multiple interacting root systems using X-ray microcomputed tomography - The Plant Journal

Andres Zurita's insight:

Root system interactions and competition for resources are active areas of research that contribute to our understanding of how roots perceive and react to environmental conditions. Recent research has shown this complex suite of processes can now be observed in a natural environment (i.e. soil) through the use of X-ray microcomputed tomography (μCT), which allows non-destructive analysis of plant root systems. Due to their similar X-ray attenuation coefficients and densities, the roots of different plants appear as similar greyscale intensity values in μCT image data. Unless they are manually and carefully traced, it has not previously been possible to automatically label and separate different root systems grown in the same soil environment. We present a technique, based on a visual tracking approach, which exploits knowledge of the shape of root cross-sections to automatically recover from X-ray μCT data three-dimensional descriptions of multiple, interacting root architectures growing in soil. The method was evaluated on both simulated root data and real images of two interacting winter wheat Cordiale (Triticumaestivum L.) plants grown in a single soil column, demonstrating that it is possible to automatically segment different root systems from within the same soil sample. This work supports the automatic exploration of supportive and competitive foraging behaviour of plant root systems in natural soil environments.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Molecular cloning and heterologous expression analysis of JrVTE1 gene from walnut (Juglans regia)

Molecular cloning and heterologous expression analysis of JrVTE1 gene from walnut (Juglans regia) | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Tocopherol cyclase (VTE1) plays a key role in promoting the production of γ-tocopherol and improving total tocopherol content in photosynthetic organisms. Walnut is an important source of tocopherols in the human diet, and γ-tocopherol is the major tocopherol compound in walnut kernels. In this study, a full-length cDNA of the VTE1 gene was isolated from walnut using RT-PCR and RACE, and designated as JrVTE1. The full-length cDNA of the JrVTE1 gene contained a 1353-bp open-reading frame encoding a 451-amino-acid protein with a calculated molecular weight of 49.5 kDa. The deduced JrVTE1 protein had a considerable homology with other plant VTE1s and belonged to the tocopherol cyclase family. Functional characterization of JrVTE1 by heterologous expression was carried out in E. coli BL21 (DE3) and microshoot lines of the fruit trees jujube (Zizyphus jujuba var. spinosa) and pear (Pyrus communis) cultivar ‘Old Home’. JrVTE1 in E. coli expressed as a 50 kDa protein, as expected. One or two copies of the transferred JrVTE1 gene were detected in the genomes of representative transgenic lines (from the initial transgenic plants) of jujube and pear by gel blots analysis. Over-expression of JrVTE1 in jujube and pear resulted in an accumulation of tocopherol and a shift in tocopherol composition in leaf, root and stem tissues. In the transgenic jujube, the total tocopherol content increased by 29.8 μg/g in the stems of line J3, 43.7 and 22.5 μg/g in the roots and leaves of line J1, respectively, whereas in the transgenic pear it increased by 47.3 μg/g in the leaf of line P3, and 16.7 and 10.4 μg/g in roots and stems of line P9, respectively. In the examined tissues of transgenic plants, the highest accumulation rate was the γ-tocopherol. These results indicate that JrVTE1 is one of the rate-limiting enzymes for tocopherol production and could be used to improve the tocopherol content of tree crops through genetic engineering.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism

Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses

Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Epigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity. To better understand the global function of ICU2 in epigenetic regulation, here we performed a microarray analysis of icu2-1 mutant plants. We found that the genes up-regulated in the icu2-1 mutant included genes encoding transcription factors and targets of the Polycomb Repressive Complexes. The down-regulated genes included many known players in salicylic acid (SA) biosynthesis and accumulation, ABA signaling and ABA-mediated responses. In addition, we found that icu2-1 plants had reduced SA levels in normal conditions; infection by Fusarium oxysporum induced SA accumulation in the En-2 wild type but not in the icu2-1 mutant. The icu2-1 plants were also hypersensitive to salt stress and exogenous ABA in seedling establishment, post-germination growth and stomatal closure, and accumulated more ABA than the wild type in response to salt stress. The icu2-1 mutant also showed high tolerance to the oxidative stress produced by 3-amino-1,2,4-triazole (3-AT). Our results uncover a role for ICU2 in the regulation of genes involved in ABA signaling as well as in SA biosynthesis and accumulation.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene

Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Rotundone was initially identified as a grape-derived compound responsible for the peppery aroma of Shiraz wine varieties. It has subsequently been found in black and white pepper and several other spices. Because of its potent aroma, the molecular basis for rotundone formation is of particular relevance to grape and wine scientists and industry. We have identified and functionally characterized in planta a sesquiterpene synthase, VvGuaS, from developing grape berries, and have demonstrated that it produces the precursor of rotundone, α-guaiene, as its main product. The VvGuaS enzyme is a novel allele of the sesquiterpene synthase gene, VvTPS24, which has previously been reported to encode VvPNSeInt, an enzyme that produces a variety of selinene-type sesquiterpenes. This newly discovered VvTPS24 allele encodes an enzyme 99.5% identical to VvPNSeInt, with the differences comprising just 6 out of the 561 amino acid residues. Molecular modelling of the enzymes revealed that two of these residues, T414 and V530, are located in the active site of VvGuaS within 4 Å of the binding-site of the substrate, farnesyl pyrophosphate. Mutation of these two residues of VvGuaS into the corresponding polymorphisms in VvPNSeInt results in a complete functional conversion of one enzyme into the other, while mutation of each residue individually produces an intermediate change in the product profile. We have therefore demonstrated that VvGuaS, an enzyme responsible for production of the rotundone precursor, α-guaiene, is encoded by a novel allele of the previously characterized grapevine gene VvTPS24 and that two specific polymorphisms are responsible for functional differences between VvTPS24 alleles.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Genome Biology | Diversity of CRISPR-Cas immune systems and molecular machines

Genome Biology | Diversity of CRISPR-Cas immune systems and molecular machines | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Bacterial adaptive immunity hinges on CRISPR-Cas systems that provide DNA-encoded, RNA-mediated targeting of exogenous nucleic acids. A plethora of CRISPR molecular machines occur broadly in prokaryotic genomes, with a diversity of Cas nucleases that can be repurposed for various applications.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile

The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of  Fitzroya cupressoides  Temperate Forests in Southern Chile | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:
Abstract

Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113–114 Mg C ha-1 and 448–517 Mg C ha-1 in AC and AA, respectively. Aboveground productivity was 3.35–3.36 Mg C ha-1 year-1 in AC and 2.22–2.54 Mg C ha-1 year-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21–4.24 and 3.78–4.10 Mg C ha-1 year-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539–640 years for the whole forest in the Andes and 1368–1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

more...
No comment yet.
Rescooped by Andres Zurita from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

Plants in the News 6 November 2015: Pineapple, Ananas comosus | Plant Science Today

Plants in the News 6 November 2015: Pineapple, Ananas comosus | Plant Science Today | Plant Gene Seeker -PGS | Scoop.it

Via Mary Williams
Andres Zurita's insight:

Great post. CAM plants on the move!

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Genomics as the key to unlocking the polyploid potential of wheat

Genomics as the key to unlocking the polyploid potential of wheat | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has ‘locked up’ a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The pineapple genome and the evolution of CAM photosynthesis

The pineapple genome and the evolution of CAM photosynthesis | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance

Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCCin an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mM NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Proteins of Unknown Biochemical Function: A Persistent Problem and a Roadmap to Help Overcome It

Proteins of Unknown Biochemical Function: A Persistent Problem and a Roadmap to Help Overcome It | Plant Gene Seeker -PGS | Scoop.it
Andres Zurita's insight:

The number of sequenced genomes is rapidly increasing, but functional annotation of the genes in these genomes lags far behind. Even in Arabidopsis (Arabidopsis thaliana), only approximately 40% of enzyme- and transporter-encoding genes have credible functional annotations, and this number is even lower in nonmodel plants. Functional characterization of unknown genes is a challenge, but various databases (e.g. for protein localization and coexpression) can be mined to provide clues. If homologous microbial genes exist—and about one-half the genes encoding unknown enzymes and transporters in Arabidopsis have microbial homologs—cross-kingdom comparative genomics can powerfully complement plant-based data. Multiple lines of evidence can strengthen predictions and warrant experimental characterization. In some cases, relatively quick tests in genetically tractable microbes can determine whether a prediction merits biochemical validation, which is costly and demands specialized skills.

more...
No comment yet.