Plant Gene Seeker -PGS
8.3K views | +0 today
 
Scooped by Andres Zurita
onto Plant Gene Seeker -PGS
Scoop.it!

Superdomestication, feed-forward breeding and climate proofing crops

Superdomestication, feed-forward breeding and climate proofing crops | Plant Gene Seeker -PGS | Scoop.it

Climate Proofing of Food Crops, through genetic improvement for adaptation, is an important, medium-term, objective to ensure food-security and increase production while enhancing the sustainability of agriculture. The IAEA has a Coordinated Research Project discussing this topic (archive version). In the YouTube video here, I discuss some of the challenges plant researchers are addressing, and review some of the collaborative work of our Molecular Cytogenetics group that relates to understanding crop evolution, measuring biodiversity, and exploiting and quantifying genetic diversity by hybridization, mapping, introgression, and cell fusion. References to our work in the general areas I am talking about are given at the bottom of this post. Please watch in HD high definition if your internet connection allows. The presentation can be viewed or downloaded from Slideshare (where there are hyper-links to some of the related publications); all my content is CC-BY-NC so please feel free to use in your non-commercial presentations and outputs with acknowledgement.

more...
No comment yet.
Plant Gene Seeker -PGS
Absolutely Fascinated for plant & genomes
Curated by Andres Zurita
Your new post is loading...
Your new post is loading...
Scooped by Andres Zurita
Scoop.it!

Frontiers | Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase | Plant Science

Frontiers | Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase | Plant Science | Plant Gene Seeker -PGS | Scoop.it
One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Improvements in Genomic Technologies: Application to Crop Genomics

Improvements in Genomic Technologies: Application to Crop Genomics | Plant Gene Seeker -PGS | Scoop.it
Second-generation sequencing (SGS) has advanced the study of crop genomes and has provided insights into diversity and evolution. However, repetitive DNA sequences in crops often lead to incomplete or erroneous assemblies because SGS reads are too short to fully resolve these repeats. To overcome some of these challenges, long-read sequencing and optical mapping have been developed to produce high-quality assemblies for complex genomes. Previously, high error rates, low throughput, and high costs have limited the adoption of long-read sequencing and optical mapping. However, with recent improvements and the development of novel algorithms, the application of these technologies is increasing. We review the development of long-read sequencing and optical mapping, and assess their application in crop genomics for breeding improved crops.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Plant, Cell & Environment - Special Issue on Water Transport 

Plant, Cell & Environment - Special Issue on Water Transport  | Plant Gene Seeker -PGS | Scoop.it
Outstanding articles on water transport and regulation, plus effects on Carbon dioxide, stomatal responses, drought.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Technology: The Future of Agriculture : Nature 

Technology: The Future of Agriculture : Nature  | Plant Gene Seeker -PGS | Scoop.it
A technological revolution in farming led by advances in robotics and sensing technologies looks set to disrupt modern practice.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate

Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate | Plant Gene Seeker -PGS | Scoop.it

Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in response to low Pi availability. This program is activated upon contact of the root tip with low-Pi media and induces premature cell differentiation and the arrest of mitotic activity in the root apical meristem, resulting in a short-root phenotype. However, the mechanisms that regulate the primary root response to Pi-limiting conditions remain largely unknown. Here we report on the isolation and characterization of two low-Pi insensitive mutants (lpi5 and lpi6), which have a long-root phenotype when grown in low-Pi media. Cellular, genomic, and transcriptomic analysis of low-Pi insensitive mutants revealed that the genes previously shown to underlie Arabidopsis Al tolerance via root malate exudation, known as SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1), represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana. Our results also show that exogenous malate can rescue the long-root phenotype of lpi5 and lpi6. Malate exudation is required for the accumulation of Fe in the apoplast of meristematic cells, triggering the differentiation of meristematic cells in response to Pi deprivation.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Prospect on Ionomic Signatures for the Classification of Grapevine Berries According to Their Geographical Origin | Plant Science

Prospect on Ionomic Signatures for the Classification of Grapevine Berries According to Their Geographical Origin | Plant Science | Plant Gene Seeker -PGS | Scoop.it
The determination of food geographical origin has been an important subject of study over the past decade, with an increasing number of analytical techniques being developed to determine the provenance of agricultural products. Agricultural soils can differ for the composition and the relative quantities of mineral nutrients and trace elements whose bioavailability depends on soil properties. Therefore, the ionome of fruits, vegetables and derived products can reflect the mineral composition of the growth substrate. Multi-elemental analysis has been successfully applied to trace the provenance of wines from different countries or different wine-producing regions. However, winemaking process and environmental and cultural conditions may affect a geographical fingerprint. In this article, we discuss the possibility of applying ionomics in wines classification on a local scale and also by exploiting grape berry analyses. In this regard, we present the ionomic profile of grapevine berries grown within an area of approximately 300 km2 and the subsequent application of chemometric methods for the assignment of their geographical origin. The best discrimination was obtained by using a dataset composed only of rare earth elements (REEs). Considering the experiences reported in the literature and our results, we concluded that sample representativeness and the application of a preliminary Principal Component Analysis, as pattern recognition techniques, might represent two necessary starting points for the geographical determination of the geographical origin of grape berries; therefore, on the basis of these observations we also include some recommendations to be considered for future application of these techniques for grape and wines classification.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Genome Editing of Plants

Genome Editing of Plants | Plant Gene Seeker -PGS | Scoop.it
Genome editing in organisms via random mutagenesis is a naturally occurring phenomenon. As a technology, genome editing has evolved from the use of chemical and physical mutagenic agents capable of altering DNA sequences to biological tools such as designed sequence-specific nucleases (SSN) to produce knock-out (KO) or knock-in (KI) edits and Oligonucleotide Directed Mutagenesis (ODM) where specific nucleotide changes are made in a directed manner resulting in custom single nucleotide polymorphisms (SNPs). Cibus' SU Canola™, which the US Department of Agriculture (USDA) views as non-genetically modified (non-GM), is Cibus' first commercial product arising from plant genome editing and had its test launch in 2014. Regulatory aspects of the various genome editing tools will be discussed.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine

The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine | Plant Gene Seeker -PGS | Scoop.it
Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Factors influencing stomatal conductance in response to water availability in grapevine: a meta‐analysis

The main factors regulating grapevine response to decreasing water availability were assessed under statistical support using published data related to leaf water relations in an extensive range of scion and rootstock genotypes. Matching leaf water potential (Ψleaf) and stomatal conductance (gs) data were collected from peer-reviewed literature with associated information. The resulting database contained 718 data points from 26 different Vitis vinifera varieties investigated as scions, 15 non-V. vinifera rootstock genotypes and 11 own-rooted V. vinifera varieties. Linearised data were analysed using the univariate general linear model (GLM) with factorial design including biological (scion and rootstock genotypes), methodological and environmental (soil) fixed factors. The first GLM performed on the whole database explained 82.4% of the variability in data distribution having the rootstock genotype the greatest contribution to variability (19.1%) followed by the scion genotype (16.2%). A classification of scions and rootstocks according to their mean predicted gs in response to moderate water stress was generated. This model also revealed that gs data obtained using a porometer were in average 2.1 times higher than using an infra-red gas analyser. The effect of soil water-holding properties was evaluated in a second analysis on a restricted database and showed a scion-dependant effect, which was dominant over rootstock effect, in predicting gs values. Overall the results suggest that a continuum exists in the range of stomatal sensitivities to water stress in V. vinifera, rather than an isohydric–anisohydric dichotomy, that is further enriched by the diversity of scion-rootstock combinations and their interaction with different soils.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Frontiers | Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns | Crop Science and Horticulture

Frontiers | Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns | Crop Science and Horticulture | Plant Gene Seeker -PGS | Scoop.it
Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (Fv/Fm) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Genome resources for climate‐resilient cowpea, an essential crop for food security

Genome resources for climate‐resilient cowpea, an essential crop for food security | Plant Gene Seeker -PGS | Scoop.it
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Dancing in the dark: darkness as a signal in plants

Dancing in the dark: darkness as a signal in plants | Plant Gene Seeker -PGS | Scoop.it

Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light–dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The Key to Mn Homeostasis in Plants: Regulation of Mn Transporters

The Key to Mn Homeostasis in Plants: Regulation of Mn Transporters | Plant Gene Seeker -PGS | Scoop.it

Plants only require small amounts of manganese (Mn) for healthy growth, but Mn concentrations in soil solution vary from sub-micromolar to hundreds of micromolar across the growth
period. Therefore, plants must deal with large Mn concentration fluctuations, but the molecular mechanisms underlying how plants cope with low and high Mn concentrations are poorly understood. In this Opinion we discuss the role of Mn transporters in the
uptake, distribution, and detoxification of Mn in response to changes in Mn concentrations through their regulation at the transcriptional and protein levels, mainly focusing on rice, an Mn-tolerant and −accumulating species.

more...
No comment yet.
Rescooped by Andres Zurita from Plant and Seed Biology
Scoop.it!

State of the World's Plants | Royal Botanic Gardens, Kew

State of the World's Plants | Royal Botanic Gardens, Kew | Plant Gene Seeker -PGS | Scoop.it
Annual cutting-edge horizon scan of global plant status. Produced by Royal Botanic Gardens Kew - Science.

Via Loïc Lepiniec
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis

The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis | Plant Gene Seeker -PGS | Scoop.it
Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Nutrition: A world of insecurity: Nature Research

Nutrition: A world of insecurity: Nature Research | Plant Gene Seeker -PGS | Scoop.it
Malnutrition is a global problem. With population and consumption set to rise over the coming decades, achieving food security will require action on many fronts.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat

Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat | Plant Gene Seeker -PGS | Scoop.it
Climate-change-driven stresses such as extreme temperatures, water deficit, and ion imbalance are projected to exacerbate and jeopardize global food security. Under field conditions, these stresses usually occur simultaneously and cause damages that exceed single stresses. Here, we investigated the transcriptional patterns and morpho-physiological acclimations of Brachypodium dystachion to single salinity, drought, and heat stresses, as well as their double and triple stress combinations. Hierarchical clustering analysis of morpho-physiological acclimations showed that several traits exhibited a gradually aggravating effect as plants were exposed to combined stresses. On the other hand, other morphological traits were dominated by salinity, while some physiological traits were shaped by heat stress. Response patterns of differentially expressed genes, under single and combined stresses (i.e. common stress genes), were maintained only among 37% of the genes, indicating a limited expression consistency among partially overlapping stresses. A comparison between common stress genes and genes that were uniquely expressed only under combined stresses (i.e. combination unique genes) revealed a significant shift from increased intensity to antagonistic responses, respectively. The different transcriptional signatures imply an alteration in the mode of action under combined stresses and limited ability to predict plant responses as different stresses are combined. Coexpression analysis coupled with enrichment analysis revealed that each gene subset was enriched with different biological processes. Common stress genes were enriched with known stress response pathways, while combination unique-genes were enriched with unique processes and genes with unknown functions that hold the potential to improve stress tolerance and enhance cereal productivity under suboptimal field conditions.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations | Plant Gene Seeker -PGS | Scoop.it

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The interaction of human population, food production, and biodiversity protection

Research suggests that the scale of human population and the current pace of its growth contribute substantially to the loss of biological diversity. Although technological change and unequal consumption inextricably mingle with demographic impacts on the environment, the needs of all human beings—especially for food—imply that projected population growth will undermine protection of the natural world. Numerous solutions have been proposed to boost food production while protecting biodiversity, but alone these proposals are unlikely to staunch biodiversity loss. An important approach to sustaining biodiversity and human well-being is through actions that can slow and eventually reverse population growth: investing in universal access to reproductive health services and contraceptive technologies, advancing women’s education, and achieving gender equality.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Genomic history of the origin and domestication of common bean unveils its closest sister species

Genomic history of the origin and domestication of common bean unveils its closest sister species | Plant Gene Seeker -PGS | Scoop.it
Background
Modern civilization depends on only a few plant species for its nourishment. These crops were derived via several thousands of years of human selection that transformed wild ancestors into high-yielding domesticated descendants. Among cultivated plants, common bean (Phaseolus vulgaris L.) is the most important grain legume. Yet, our understanding of the origins and concurrent shaping of the genome of this crop plant is limited.

Results
We sequenced the genomes of 29 accessions representing 12 Phaseolus species. Single nucleotide polymorphism-based phylogenomic analyses, using both the nuclear and chloroplast genomes, allowed us to detect a speciation event, a finding further supported by metabolite profiling. In addition, we identified ~1200 protein coding genes (PCGs) and ~100 long non-coding RNAs with domestication-associated haplotypes. Finally, we describe asymmetric introgression events occurring among common bean subpopulations in Mesoamerica and across hemispheres.

Conclusions
We uncover an unpredicted speciation event in the tropical Andes that gave rise to a sibling species, formerly considered the “wild ancestor” of P. vulgaris, which diverged before the split of the Mesoamerican and Andean P. vulgaris gene pools. Further, we identify haplotypes strongly associated with genes underlying the emergence of domestication traits. Our findings also reveal the capacity of a predominantly autogamous plant to outcross and fix loci from different populations, even from distant species, which led to the acquisition by domesticated beans of adaptive traits from wild relatives. The occurrence of such adaptive introgressions should be exploited to accelerate breeding programs in the near future.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition

Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition | Plant Gene Seeker -PGS | Scoop.it

Plants uptake nitrogen (N) from the soil mainly in the form of nitrate. However, nitrate is often distributed heterogeneously in natural soil. Plants, therefore, have a systemic long-distance signalling mechanism by which N starvation on one side of the root leads to a compensatory N uptake on the other N-rich side1,2. This systemic N acquisition response is triggered by a root-to-shoot mobile peptide hormone, C-TERMINALLY ENCODED PEPTIDE (CEP), originating from the N-starved roots3,4, but the molecular nature of the descending shoot-to-root signal remains elusive. Here, we show that phloem-specific polypeptides that are induced in leaves upon perception of root-derived CEP act as descending long-distance mobile signals translocated to each root. These shoot-derived polypeptides, which we named CEP DOWNSTREAM 1 (CEPD1) and CEPD2, upregulate the expression of the nitrate transporter gene NRT2.1 in roots specifically when nitrate is present in the rhizosphere. Arabidopsis plants deficient in this pathway show impaired systemic N acquisition response accompanied with N-deficiency symptoms. These fundamental mechanistic insights should provide a conceptual framework for understanding systemic nutrient acquisition responses in plants.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Push–pull strategy in the regulation of postembryonic root development

Push–pull strategy in the regulation of postembryonic root development | Plant Gene Seeker -PGS | Scoop.it
Highlights 
• Multiple local regulators maintain the integrity of root stem cell niche. 
• Mobile signals from the stem cell niche affect transit-amplifying cells and beyond. 
• Top-down signals through vascular system regulate the meristem activity. 
• Bottom-up and top-down signals coordinate the postembryonic root growth. 

Unlike animals, plants continue to grow throughout their lives. The stem cell niche, protected in meristems of shoots and roots, enables this process. In the root, stem cells produce precursors for highly organized cell types via asymmetric cell divisions. These precursors, which are “transit-amplifying cells,” actively divide for several rounds before entering into differentiation programs. In this review, we highlight positive feedback regulation between shoot- and root-ward signals during the postembryonic root growth, which is reminiscent of a “push–pull strategy” in business parlance. This property of molecular networks underlies the regulation of stem cells and their organizer, the “quiescent center,” as well as of the signaling between stem cell niche, transit-amplifying cells, and beyond.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species

The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (Amax) and leaf nitrogen (LNarea) for cultivated and wild species. The relationship between Amax and LNarea was evaluated using a frontier analysis (90th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. 

Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. 

Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity.

more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

The pangenome of hexaploid bread wheat

The pangenome of hexaploid bread wheat | Plant Gene Seeker -PGS | Scoop.it
There is an increasing understanding that gene presence absence variation plays an important role in the heritability of agronomic traits, however there have been relatively few studies on gene presence absence variation in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140,500 +/- 102 genes, a core genome of 81,070 +/- 1,631 genes, and an average of 128,656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to gene presence variation, more than 36 million intervarietal SNPs were identified across the pangenome. This study of the wheat pangenome provides insight into elite wheat genome diversity as a basis for genomics based improvement of this important crop. A wheat pangenome Gbrowse is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data is available for download from http://wheatgenome.info/wheat_genome_databases.php.
more...
No comment yet.
Scooped by Andres Zurita
Scoop.it!

Chloride on the Move

Chloride on the Move | Plant Gene Seeker -PGS | Scoop.it

Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic.
Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined.

more...
No comment yet.