Plant & Evolution
20.4K views | +4 today
Follow
 
Scooped by Pierre-Marc Delaux
onto Plant & Evolution
Scoop.it!

Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis

Abstract

Most land plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of miR393, a microRNA that targets several auxin receptors, in AM root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum (Solanaceae), Medicago truncatula (Fabaceae) and Oryza sativa (Poaceae). Treatment of S. lycopersicum, M. truncatula and O. sativa roots with concentration of synthetic auxin analogs that did not affect root development, stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in downregulation of auxin receptor genes (TIR1, AFB) and in under-developed arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.

Pierre-Marc Delaux's insight:

Tomato, Medicago and Rice... nice job!

more...
No comment yet.
Plant & Evolution
Your new post is loading...
Your new post is loading...
Scooped by Pierre-Marc Delaux
Scoop.it!

Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants

Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite’s dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.

more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Global deceleration of gene evolution following recent genome hybridizations in fungi

Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon. Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution.

more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana

Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana | Plant & Evolution | Scoop.it
Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17 Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders. The inversion is created by Vandal transposon activity, splitting an F-box and relocating a pericentric heterochromatin segment in juxtaposition with euchromatin without affecting the epigenetic landscape. Examination of the RegMap panel and the 1001 Arabidopsis genomes revealed more than 170 inversion accessions in Europe and North America. The SNP patterns revealed historical recombinations from which we infer diverse haplotype patterns, ancient introgression events and phylogenetic relationships. We find a robust association between the inversion and fecundity under drought. We also find linkage disequilibrium (LD) between the inverted region and the early flowering Col-FRIGIDA allele. Finally, SNP analysis elucidates the origin of the inversion to South-Eastern Europe ~5,000 years ago and the FRI-Col allele to North-West Europe, and reveals the spreading of a single haplotype to North America during the 17th to 19th century. The “American haplotype” was identified from several European localities, potentially due to return migration.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley

The cereal grass barley was domesticated about 10,000 years before the present in the Fertile Crescent and became a founder crop of Neolithic agriculture1. Here we report the genome sequences of five 6,000-year-old barley grains excavated at a cave in the Judean Desert close to the Dead Sea. Comparison to whole-exome sequence data from a diversity panel of present-day barley accessions showed the close affinity of ancient samples to extant landraces from the Southern Levant and Egypt, consistent with a proposed origin of domesticated barley in the Upper Jordan Valley. Our findings suggest that barley landraces grown in present-day Israel have not experienced major lineage turnover over the past six millennia, although there is evidence for gene flow between cultivated and sympatric wild populations. We demonstrate the usefulness of ancient genomes from desiccated archaeobotanical remains in informing research into the origin, early domestication and subsequent migration of crop species.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation

After domestication, during a process of widespread range extension, barley adapted to a broad spectrum of agricultural environments. To explore how the barley genome responded to the environmental challenges it encountered, we sequenced the exomes of a collection of 267 georeferenced landraces and wild accessions. A combination of genome-wide analyses showed that patterns of variation have been strongly shaped by geography and that variant-by-environment associations for individual genes are prominent in our data set. We observed significant correlations of days to heading (flowering) and height with seasonal temperature and dryness variables in common garden experiments, suggesting that these traits were major drivers of environmental adaptation in the sampled germplasm. A detailed analysis of known flowering-associated genes showed that many contain extensive sequence variation and that patterns of single- and multiple-gene haplotypes exhibit strong geographical structuring. This variation appears to have substantially contributed to range-wide ecogeographical adaptation, but many factors key to regional success remain unidentified.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees

Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Grasses suppress shoot-borne roots to conserve water during drought

Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Host genotype and age shape the leaf and root microbiomes of a wild perennial plant

Host genotype and age shape the leaf and root microbiomes of a wild perennial plant | Plant & Evolution | Scoop.it
Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant’s genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome is evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens

The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of Epidermal Patterning Factors (EPFs) which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF , TMM and at least one ERECTA gene which function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionary distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes

Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes | Plant & Evolution | Scoop.it
Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity

Stomata, epidermal valves facilitating plant–atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix–loop–helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot’s developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture

Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture | Plant & Evolution | Scoop.it
Plant architecture is modified by a regulatory system that controls axillary bud outgrowth. Key components in this system are strigolactones (SLs) and BRANCHED1, which inhibit bud outgrowth. Their role has been described in herbaceous model systems, including Arabidopsis, rice and pea. However, a role in woody perennial species, including the model tree poplar, has not been unequivocally proven. In this study, we tested a role for SLs in Populus × canescens by treatment with the synthetic SL GR24. We generated MORE AXILLARY BRANCHING4 (MAX4) knockdown lines to study the architectural phenotype of poplar SL biosynthesis mutants and the expression of SL-regulated genes. We show that GR24 is perceived by the model tree poplar. MAX4 knockdown lines exhibit typical SL deficiency symptoms. The observed changes in branching pattern, internode length and plant height can be rescued by grafting. We identified putative poplar BRANCHED1 and BRANCHED2 genes and provide evidence for a regulation of BRANCHED1 by SLs. Our results suggest a conservation of major regulatory mechanisms in bud outgrowth control in the model tree poplar. This may facilitate further research, pinpointing the role of SLs and BRANCHED1 in the complex regulation of bud outgrowth in trees.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

The genome of a southern hemisphere seagrass species (Zostera muelleri)

Seagrasses are marine angiosperms that evolved from land plants, but returned to the sea around 140 Mya during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here we report the assembly and characterisation of the Zostera muelleri genome, a southern hemisphere temperate species. Multiples genes were lost or modified in Z. muelleri compared to terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signalling, and cell wall catabolism. There is evidence of whole genome duplication in Z. muelleri however, an ancient pan-Commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor | Plant & Evolution | Scoop.it

Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

Reciprocal genomic evolution in the ant-fungus agricultural symbiosis | Plant & Evolution | Scoop.it
The attine ant–fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal cultivars. We show that ant subsistence farming probably originated in the early Tertiary (55–60 MYA), followed by further transitions to the farming of fully domesticated cultivars and leaf-cutting, both arising earlier than previously estimated. Evolutionary modifications in the ants include unprecedented rates of genome-wide structural rearrangement, early loss of arginine biosynthesis and positive selection on chitinase pathways. Modifications of fungal cultivars include loss of a key ligninase domain, changes in chitin synthesis and a reduction in carbohydrate-degrading enzymes as the ants gradually transitioned to functional herbivory. In contrast to human farming, increasing dependence on a single cultivar lineage appears to have been essential to the origin of industrial-scale ant agriculture.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

High similarity between distantly related species of a plant SINE family is consistent with a scenario of vertical transmission without horizontal transfers

Many transposable element (TE) families show surprisingly high levels of similarity between distantly related species. This high similarity, coupled with a ‘patchy’ phylogenetic distribution, has often been attributed to frequent horizontal transfers of TEs between species, even though the mechanistic basis tends to be speculative. Here, we studied the evolution of the Au SINE (Short INterspersed Element) family, in which high similarity between distantly related plant species has been reported. We were able to identify several copies present in orthologous regions of various species, including species that diverged ~90 mya, thereby confirming the presence of Au SINE at multiple evolutionary time points. We also found that the Au SINE has been degenerating and is en route to disappearing in many species, indicating that the loss of Au SINE is common. Our results suggest that the evolution of the Au SINE can be readily explained by a scenario of vertical transmission without having to invoke hypothetical scenarios of rampant horizontal transfers. The Au SINE was likely present in the common ancestor of all angiosperms and was retained in some lineages while lost from others. The high level of conservation is probably because the sequences were important for ensuring their transpositional activity. This model of TE evolution should provide a basic framework for understanding the evolution of TEs in general.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism

Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism | Plant & Evolution | Scoop.it

The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection.

more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Evolutionary lessons from California plant phylogeography

Phylogeography documents the spatial distribution of genetic lineages that result from demographic processes, such as population expansion, population contraction, and gene movement, shaped by climate fluctuations and the physical landscape. Because most phylogeographic studies have used neutral markers, the role of selection may have been undervalued. In this paper, we contend that plants provide a useful evolutionary lesson about the impact of selection on spatial patterns of neutral genetic variation, when the environment affects which individuals can colonize new sites, and on adaptive genetic variation, when environmental heterogeneity creates divergence at specific loci underlying local adaptation. Specifically, we discuss five characteristics found in plants that intensify the impact of selection: sessile growth form, high reproductive output, leptokurtic dispersal, isolation by environment, and the potential to evolve longevity. Collectively, these traits exacerbate the impact of environment on movement between populations and local selection pressures—both of which influence phylogeographic structure. We illustrate how these unique traits shape these processes with case studies of the California endemic oak, Quercus lobata, and the western North American lichen, Ramalina menziesii. Obviously, the lessons we learn from plant traits are not unique to plants, but they highlight the need for future animal, plant, and microbe studies to incorporate its impact. Modern tools that generate genome-wide sequence data are now allowing us to decipher how evolutionary processes affect the spatial distribution of different kinds of genes and also to better model future spatial distribution of species in response to climate change.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Molecular genetics and evolution of disease resistance in cereals

Molecular genetics and evolution of disease resistance in cereals | Plant & Evolution | Scoop.it
Cereal crops produce a large part of the globally consumed food and feed. Because of the constant presence of devastating pathogens, the molecular characterization of disease resistance is a major research area and highly relevant for breeding. There has been recent and accelerating progress in the understanding of three distinct resistance mechanisms in cereals: resistance conferred by plasma membrane-localized receptor proteins; race-specific resistance conferred by intracellular immune receptors; and quantitative disease resistance. Intracellular immune receptors provide a particularly rich source for evolutionary studies, and have, for example, resulted in the recent discovery of a novel detection mechanism based on integrated decoy domains. Evolutionary studies have also revealed the origins of active resistance genes in both wild progenitors of today's cereals as well as in cultivated forms. In addition, independent evolution of orthologous genes in related cereals has resulted in resistance to different pathogen species. Quantitative resistance genes have been best characterized in wheat. The quantitative resistance genes identified so far in wheat encode transporter proteins or unusual kinase proteins. The recent discoveries in these three different resistance mechanisms have contributed to the basic molecular understanding of cereal immunity against pathogens and have suggested novel applications for resistance breeding.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Conserved but attenuated parental gene expression in allopolyploids: constitutive zinc hyperaccumulation in the allotetraploid Arabidopsis kamchatica

Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator A. halleri and of the nonaccumulator A. lyrata. We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata. Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica. Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue

The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue | Plant & Evolution | Scoop.it
Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Plant Evolution: Evolving Antagonistic Gene Regulatory Networks

Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

High-resolution community profiling of arbuscular mycorrhizal fungi

High-resolution community profiling of arbuscular mycorrhizal fungi | Plant & Evolution | Scoop.it
Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully discriminated closely related AMF species, which would not be discernible using SSU sequences. In inoculation tests we could trace the introduced AMF inoculum at the molecular level. One of the introduced strains almost replaced the local strain(s), revealing that AMF inoculation can have a profound impact on the native community. The methodology presented offers researchers a powerful new tool for AMF community analysis because it unifies improved specificity and enhanced resolution, whereas the drawback of medium sequencing throughput appears of lesser importance for low-diversity groups such as AMF.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures

Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures | Plant & Evolution | Scoop.it
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
more...
No comment yet.
Scooped by Pierre-Marc Delaux
Scoop.it!

Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution

Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution | Plant & Evolution | Scoop.it
Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family.
more...
No comment yet.