plant cell genetics
Follow
Find
10.0K views | +3 today
 
Scooped by Jean-Pierre Zryd
onto plant cell genetics
Scoop.it!

Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production - Springer

In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

more...
No comment yet.

From around the web

plant cell genetics
Your new post is loading...
Your new post is loading...
Scooped by Jean-Pierre Zryd
Scoop.it!

Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing

Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing | plant cell genetics | Scoop.it
Many phylogenomic studies based on transcriptomes have been limited to “single-copy” genes due to methodological challenges in homology and orthology inferences. Only a relatively small number of studies have explored analyses beyond reconstructing species relationships. We sampled 69 transcriptomes in the hyperdiverse plant clade Caryophyllales and 27 outgroups from annotated genomes across eudicots. Using a combined similarity- and phylogenetic tree-based approach, we recovered 10,960 homolog groups, where each was represented by at least eight ingroup taxa. By decomposing these homolog trees, and taking gene duplications into account, we obtained 17,273 ortholog groups, where each was represented by at least ten ingroup taxa. We reconstructed the species phylogeny using a 1,122-gene data set with a gene occupancy of 92.1%. From the homolog trees, we found that both synonymous and nonsynonymous substitution rates in herbaceous lineages are up to three times as fast as in their woody relatives. This is the first time such a pattern has been shown across thousands of nuclear genes with dense taxon sampling. We also pinpointed regions of the Caryophyllales tree that were characterized by relatively high frequencies of gene duplication, including three previously unrecognized whole-genome duplications. By further combining information from homolog tree topology and synonymous distance between paralog pairs, phylogenetic locations for 13 putative genome duplication events were identified. Genes that experienced the greatest gene family expansion were concentrated among those involved in signal transduction and oxidoreduction, including a cytochrome P450 gene that encodes a key enzyme in the betalain synthesis pathway. Our approach demonstrates a new approach for functional phylogenomic analysis in nonmodel species that is based on homolog groups in addition to inferred ortholog groups.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Feasibility of new breeding techniques for organic farming: Trends in Plant Science

Feasibility of new breeding techniques for organic farming: Trends in Plant Science | plant cell genetics | Scoop.it
•Organic farming suffers from lower productivity than conventional agriculture because the use of pesticides, herbicides, and fertilizers is restricted.
•Rewilding furnishes crops with lost properties that their ancestors once had to tolerate adverse environmental conditions.
•Rewilding is in accordance with the values of organic breeding and would contribute to closing the yield gap.
•New breeding techniques that involve methods of genetic engineering allow for rewilding in a way that the final crop cannot be distinguished from a crop bred by traditional means.

Organic farming is based on the concept of working ‘with nature’ instead of against it; however, compared with conventional farming, organic farming reportedly has lower productivity. Ideally, the goal should be to narrow this yield gap. In this review, we specifically discuss the feasibility of new breeding techniques (NBTs) for rewilding, a process involving the reintroduction of properties from the wild relatives of crops, as a method to close the productivity gap. The most efficient methods of rewilding are based on modern biotechnology techniques, which have yet to be embraced by the organic farming movement. Thus, the question arises of whether the adoption of such methods is feasible, not only from a technological perspective, but also from conceptual, socioeconomic, ethical, and regulatory perspectives.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants?

Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? | plant cell genetics | Scoop.it

The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB).
Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding.
These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.
Keywords: Transgenesis; Marker-assisted backcrossing; Substantial equivalence; Transcriptome profile; Xa21

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Model roles for role models

Model roles for role models | plant cell genetics | Scoop.it

Nature Plants, Published online: 5 May 2015; | doi:10.1038/nplants.2015.67 ............ Some researchers already consider Arabidopsis as too complex an organism to help inform us about the fundamentals of plant biology and evolution. Plants whose common ancestor with trees and grasses was much more ancient than that of Arabidopsis are becoming popular subjects of investigation. The moss Physcomitrella patens, whose standard laboratory strain was collected from a wood near Cambridge, UK, in 1962, was the subject of over 500 publications in the past five years, while the liverwort Marchantia polymorpha could be the model plant du jour with 126 publications over the same period.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Predicted protein-protein interactions in the moss Physcomitrella patens: a new bioinformatic resource

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

BMC Plant Biology | Full text | Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens

Results show that moss cells contain extended peptide pools that are hydrolysis products of cell proteins. The peptide pool composition depends on the type of tissue yet always contains peptides derived from the major chloroplast proteins. We observe no correlation between protein abundance, its transcription level, and the amount of endogenous peptides. Active peptidogenesis in protoplasts is probably due to a range of mechanisms, with stress during isolation and immune reaction to Driselase treatment being the key ones. Eighty-nine peptides of protoplasts possess high antimicrobial potential. Genes involved in JA synthesis, as well as those associated with biotic stress, had increased transcription levels in protoplasts. Changes in the peptidome in protoplasts are accompanied by suppression of photosynthetic activity. In our future research, we aim to study which mechanisms of degradation are responsible for the formation of endogenous peptide pools in cells, evaluate biological activity of the peptides, and study the effects of hormones on peptidome formation.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Genomic Misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation

Genomic Misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation | plant cell genetics | Scoop.it
GMO regulation is built on false premises in the EU and the Cartagena biosafety protocols.


Molecular processes of transgenesis and natural mutation are similar.


It is time to change GMO regulation toward a science based product oriented legislation.


Some legislations like the one from Canada rely on Novel crops, conventional or GMOs.

The regulation of genetically engineered crops, in Europe and within the legislation of the Cartagena biosafety protocol is built on false premises: The claim was (and unfortunately still is) that there is a basic difference between conventional and transgenic crops, this despite the fact that this has been rejected on scientifically solid grounds since many years. This contribution collects some major arguments for a fresh look at regulation of transgenic crops, they are in their molecular processes of creation not basically different from conventional crops, which are based in their breeding methods on natural, sometimes enhanced mutation. But the fascination and euphoria of the discoveries in molecular biology and the new perspectives in plant breeding in the sixties and seventies led to the wrong focus on transgenic plants alone. In a collective framing process the initial biosafety debates focused on the novelty of the process of transgenesis. When early debates on the risk assessment merged into legislative decisions, this wrong focus on transgenesis alone seemed uncontested. The process-focused view was also fostered by a conglomerate of concerned scientists and biotechnology companies, both with a vested interest to at least tolerate the rise of the safety threshold to secure research money and to discourage competitors of all kinds. Policy minded people and opponent activists without deeper insight in the molecular science agreed to those efforts without much resistance. It is interesting to realize, that the focus on processes was uncontested by a majority of regulators, this despite of serious early warnings from important authorities in science, mainly of US origin. It is time to change the regulation of genetically modified (GM) crops toward a more science based process — agnostic legislation. Although this article concentrates on the critique of the process-oriented regulation, including some details about the history behind, there should be no misunderstanding that there are other important factors responsible for the failure of this kind of process-oriented regulation, most importantly: the predominance of politics in the decision making processes combined with the lack of serious scientific debates on regulatory matters within the European Union and also in the Cartagena system, the obscure and much too complex decision making structures within the EU, and the active, professional, negative and intimidating role of fundamental opposition against GM crops on all levels dealing with flawed science, often declared as better parallel science published by ‘independent’ scientists.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop

The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop | plant cell genetics | Scoop.it
We communicate the rather remarkable observation that among 291 tested accessions of cultivated sweet potato, all contain one or more transfer DNA (T-DNA) sequences. These sequences, which are shown to be expressed in a cultivated sweet potato clone (“Huachano”) that was analyzed in detail, suggest that an Agrobacterium infection occurred in evolutionary times. One of the T-DNAs is apparently present in all cultivated sweet potato clones, but not in the crop’s closely related wild relatives, suggesting the T-DNA provided a trait or traits that were selected for during domestication. This finding draws attention to the importance of plant–microbe interactions, and given that this crop has been eaten for millennia, it may change the paradigm governing the “unnatural” status of transgenic crops.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Fatal attraction: the intuitive appeal of GMO opposition: Trends in Plant Science

Fatal attraction: the intuitive appeal of GMO opposition: Trends in Plant Science | plant cell genetics | Scoop.it
Highlights

•People tend to rely on intuitive reasoning to make a judgment on GMOs.
•This intuitive reasoning includes folk biology, teleological and intentional intentions and disgust.
•Anti-GMO activists have exploited intuitions successfully to promote their cause.
•Intuitive judgments steer people away from sustainable solutions.

Public opposition to genetically modified organisms (GMOs) remains strong. By contrast, studies demonstrate again and again that GM crops make a valuable contribution to the development of a sustainable type of agriculture. The discrepancy between public opinion and the scientific evidence requires an explanation. We argue that intuitive expectations about the world render the human mind vulnerable to particular misrepresentations of GMOs. We explain how the involvement of particular intuitions accounts for the popularity, persistence, and typical features of GM opposition and tackle possible objections to our approach. To conclude, we discuss the implications for science education, science communication, and the environmental movement.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Three ancient hormonal cues co-ordinate shoot branching in a moss

Three ancient hormonal cues co-ordinate shoot branching in a moss | plant cell genetics | Scoop.it
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Plant and Seed Biology
Scoop.it!

Sequencing consolidates molecular markers with plant breeding practice

Sequencing consolidates molecular markers with plant breeding practice | plant cell genetics | Scoop.it

Key message

Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding.

Abstract

The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.


Via Ali Taheri, Loïc Lepiniec
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids

Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales

Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales | plant cell genetics | Scoop.it
Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA.
We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles.
Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae.
Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.]
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Cisgenic apple trees; development, characterization, and performance

Cisgenic apple trees; development, characterization, and performance | plant cell genetics | Scoop.it
Two methods were developed for the generation of cisgenic apples. Both have been successfully applied producing trees. The first method avoids the use of any foreign selectable marker genes; only the gene-of-interest is integrated between the T-DNA border sequences. The second method makes use of recombinase-based marker excision. For the first method we used the MdMYB10 gene from a red-fleshed apple coding for a transcription factor involved in regulating anthocyanin biosynthesis. Red plantlets were obtained and presence of the cisgene was confirmed. Plantlets were grafted and grown in a greenhouse. After 3 years, the first flowers appeared, showing red petals. Pollination led to production of red-fleshed cisgenic apples. The second method used the pM(arker)F(ree) vector system, introducing the scab resistance gene Rvi6, derived from apple. Agrobacterium-mediated transformation, followed by selection on kanamycin, produced genetically modified apple lines. Next, leaves from in vitro material were treated to activate the recombinase leading to excision of selection genes. Subsequently, the leaf explants were subjected to negative selection for marker-free plantlets by inducing regeneration on medium containing 5-fluorocytosine. After verification of the marker-free nature, the obtained plants were grafted onto rootstocks. Young trees from four cisgenic lines and one intragenic line, all containing Rvi6, were planted in an orchard. Appropriate controls were incorporated in this trial. We scored scab incidence for three consecutive years on leaves after inoculations with Rvi6-avirulent strains. One cisgenic line and the intragenic line performed as well as the resistant control. In 2014 trees started to overcome their juvenile character and formed flowers and fruits. The first results of scoring scab symptoms on apple fruits were obtained. Apple fruits from susceptible controls showed scab symptoms, while fruits from cisgenic and intragenic lines were free of scab.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Moss-made pharmaceuticals: from bench to bedside

Moss-made pharmaceuticals: from bench to bedside | plant cell genetics | Scoop.it
Over the past two decades, the moss Physcomitrella patens has been developed from scratch to a model species in basic research and in biotechnology. A fully sequenced genome, outstanding possibilities for precise genome-engineering via homologous recombination (knockout moss), a certified GMP production in moss bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein glycosylation, remarkable batch-to-batch stability and a safe cryopreservation for master cell banking are some of the key features of the moss system. Several human proteins are being produced in this system as potential biopharmaceuticals. Among the products are tumour-directed monoclonal antibodies with enhanced antibody-dependent cytotoxicity (ADCC), vascular endothelial growth factor (VEGF), complement factor H (FH), keratinocyte growth factor (FGF7/KGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), asialo-erythropoietin (asialo-EPO, AEPO), alpha-galactosidase (aGal) and beta-glucocerebrosidase (GBA). Further, an Env-derived multi-epitope HIV protein as a candidate vaccine was produced, and first steps for a metabolic engineering of P. patens have been made. Some of the recombinant biopharmaceuticals from moss bioreactors are not only similar to those produced in mammalian systems such as CHO cells, but are of superior quality (biobetters). The first moss-made pharmaceutical, aGal to treat Morbus Fabry, is in clinical trials.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing

Mapping of Agricultural Crops from Single  High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing | plant cell genetics | Scoop.it
Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR) satellite sensors. The main objective of this work is to expose performance difference between state-of-the-art parcel-based smoothing and purely data-driven conditional random field (CRF) smoothing, which is yet unknown. To fulfill this objective, we perform extensive tests with four different classification methods (Support Vector Machines, Random Forest, Gaussian Mixtures, and Maximum Likelihood) to compute the pixel-wise data term; and we also test two different definitions of the pairwise smoothness term. We have performed a detailed evaluation on different multispectral VHR images (Ikonos, QuickBird, Kompsat-2). The main finding of this study is that pairwise CRF smoothing comes close to the state-of-the-art parcel-based method that requires parcel boundaries (average difference ≈ 2.5%). Our results indicate that a single multispectral (R, G, B, NIR) image is enough to reach satisfactory classification accuracy for six crop classes (corn, pasture, rice, sugar beet, wheat, and tomato) in Mediterranean climate. Overall, it appears that crop mapping using only one-shot VHR imagery taken at the right time may be a viable alternative, especially since high-resolution multitemporal or hyperspectral coverage as well as parcel boundaries are in practice often not available.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Phototropism in gametophytic shoots of the moss Physcomitrella patens

Phototropism in gametophytic shoots of the moss Physcomitrella patens | plant cell genetics | Scoop.it
Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Max Planck Institute of Molecular Plant Physiology | Press Releases | From_leaf_to_root_-_messenger_RNAs_are_long-distance_travellers

Max Planck Institute of Molecular Plant Physiology | Press Releases | From_leaf_to_root_-_messenger_RNAs_are_long-distance_travellers | plant cell genetics | Scoop.it
Using bioinformatic data analyses an international team of scientists could discover thousands of mobile messenger RNAs.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

The effect of music performance on the transcriptome of professional musicians : Scientific Reports : Nature Publishing Group

The effect of music performance on the transcriptome of professional musicians : Scientific Reports : Nature Publishing Group | plant cell genetics | Scoop.it
Music performance by professional musicians involves a wide-spectrum of cognitive and multi-sensory motor skills, whose biological basis is unknown. Several neuroscientific studies have demonstrated that the brains of professional musicians and non-musicians differ structurally and functionally and that musical training enhances cognition. However, the molecules and molecular mechanisms involved in music performance remain largely unexplored. Here, we investigated the effect of music performance on the genome-wide peripheral blood transcriptome of professional musicians by analyzing the transcriptional responses after a 2-hr concert performance and after a /`music-free/' control session. The up-regulated genes were found to affect dopaminergic neurotransmission, motor behavior, neuronal plasticity, and neurocognitive functions including learning and memory. Particularly, candidate genes such as SNCA, FOS and DUSP1 that are involved in song perception and production in songbirds, were identified, suggesting an evolutionary conservation in biological processes related to sound perception/production. Additionally, modulation of genes related to calcium ion homeostasis, iron ion homeostasis, glutathione metabolism, and several neuropsychiatric and neurodegenerative diseases implied that music performance may affect the biological pathways that are otherwise essential for the proper maintenance of neuronal function and survival. For the first time, this study provides evidence for the candidate genes and molecular mechanisms underlying music performance.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Barley: a translational model for adaptation to climate change - Dawson - 2015 - New Phytologist - Wiley Online Library

Barley: a translational model for adaptation to climate change - Dawson - 2015 - New Phytologist - Wiley Online Library | plant cell genetics | Scoop.it
Barley (Hordeum vulgare ssp. vulgare) is an excellent model for understanding agricultural responses to climate change. Its initial domestication over 10 millennia ago and subsequent wide migration provide striking evidence of adaptation to different environments, agro-ecologies and uses. A bottleneck in the selection of modern varieties has resulted in a reduction in total genetic diversity and a loss of specific alleles relevant to climate-smart agriculture. However, extensive and well-curated collections of landraces, wild barley accessions (H. vulgare ssp. spontaneum) and other Hordeum species exist and are important new allele sources. A wide range of genomic and analytical tools have entered the public domain for exploring and capturing this variation, and specialized populations, mutant stocks and transgenics facilitate the connection between genetic diversity and heritable phenotypes. These lay the biological, technological and informational foundations for developing climate-resilient crops tailored to specific environments that are supported by extensive environmental and geographical databases, new methods for climate modelling and trait/environment association analyses, and decentralized participatory improvement methods. Case studies of important climate-related traits and their constituent genes – including examples that are indicative of the complexities involved in designing appropriate responses – are presented, and key developments for the future highlighted.
more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

GMOs of the Future: Two Recent Studies Reveal Potential of Genetic Technologies - Science Sushi

GMOs of the Future: Two Recent Studies Reveal Potential of Genetic Technologies - Science Sushi | plant cell genetics | Scoop.it
There’s no doubt that the next generation of GM crops will look very little like the oft-maligned varieties available today. The possibilities are nearly limitless, as are the rewards. And with the world’s climate changing rapidly, there’s no doubt that agriculture will need to change with it, to keep pace with an unpredictable environment. The future of agriculture may very well depend on the ingenuity of geneticists and the GMOs they create. The real question is, will these new varieties be able to do what current ones cannot: win over the hearts and minds of the people they’re designed for.

Via Mary Williams
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Chromosome Replacement and Deletion Lead to Clonal Polymorphism of Berry Color in Grapevine

Chromosome Replacement and Deletion Lead to Clonal Polymorphism of Berry Color in Grapevine | plant cell genetics | Scoop.it
Author Summary Pinot is one of the most ancient grapevine varieties made up of a large panel of clones, most of them used to produce very different wines with specific oenological characteristics in different vineyards around the world. This great diversity of clones, which is due to spontaneous somatic mutations that have occurred over time, makes Pinot a fascinating subject of study. It is the reason why we have undertaken a study focused on the color locus to identify the mutations respons
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Public funded field trials with transgenic plants in Europe: a comparison between Germany and Switzerland

Public funded field trials with transgenic plants in Europe: a comparison between Germany and Switzerland | plant cell genetics | Scoop.it
Field trails are indispensable for the scientific analysis of risks and potential benefits of genetically modified plants (GMP). The dramatic reduction of field trials in the European Union (EU) coincides with increasing safety demands, decreases in funding, and changes in the European directives. In parallel, opposition from non-governmental organizations (NGOs) has grown, and public acceptance has decreased. The cultivation of events approved by the EU is still allowed in principle, nevertheless, at least in Germany, there is a de facto moratorium on cultivation. In Switzerland, where development was much more hesitant compared to Germany, field trials are now possible, and a protected site has been established by the government. Public acceptance for scientific trials in Switzerland has risen, despite the continued moratorium on the cultivation based on a referendum.
more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

Genetic, evolutionary and plant breeding insights from the domestication of maize

Genetic, evolutionary and plant breeding insights from the domestication of maize | plant cell genetics | Scoop.it

by Sarah Hake& Jeffrey Ross-Ibarra

"The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties."


Via Mary Williams
more...
AckerbauHalle's curator insight, April 2, 3:08 AM

Great paper on the evolution of maize