plant cell genetics
Follow
Find
8.2K views | +2 today
Scooped by Jean-Pierre Zryd
onto plant cell genetics
Scoop.it!

PLOS ONE: Indirect Effect of a Transgenic Wheat on Aphids through Enhanced Powdery Mildew Resistance

PLOS ONE: Indirect Effect of a Transgenic Wheat on Aphids through Enhanced Powdery Mildew Resistance | plant cell genetics | Scoop.it

In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

more...
No comment yet.
plant cell genetics
Your new post is loading...
Scooped by Jean-Pierre Zryd
Scoop.it!

Strigolactones Inhibit Caulonema Elongation and Cell Division in the Moss Physcomitrella patens

Strigolactones Inhibit Caulonema Elongation and Cell Division in the Moss Physcomitrella patens | plant cell genetics | Scoop.it

In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs) in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea), while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor) and no canonical homologue to D14 (encoding the SL receptor). Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution.

 

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Moving beyond the GM Debate

Moving beyond the GM Debate | plant cell genetics | Scoop.it

Once again, there are calls to reopen the debate on genetically modified (GM) crops. I find these calls frustrating and unnecessarily decisive. In my opinion the GM debate, on both sides, continues to hamper the urgent need to address the diverse and pressing challenges of global food security and environmental sustainability. The destructive power of the debate comes from its conflation of unrelated issues, coupled with deeply rooted misconceptions of the nature of agriculture.

 

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Betacyanin Biosynthetic Genes and Enzymes Are Differentially Induced by (a)biotic Stress in Amaranthus hypochondriacus

Betacyanin Biosynthetic Genes and Enzymes Are Differentially Induced by (a)biotic Stress in Amaranthus hypochondriacus | plant cell genetics | Scoop.it

An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah) was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT), two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively), and a betanidin 5-O-glucosyltransferase (AhB5-GT), plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1) were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT) activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple) was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the proposal that these genes could have functions other than betacyanin biosynthesis.

 

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans

Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans | plant cell genetics | Scoop.it

 no double blindThis article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional “chemical” cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating “substantial non-equivalence” in compositional characteristics for ‘ready-to-market’ soybeans.

Jean-Pierre Zryd's insight:

To be read "cum grano salis"; it's not a double blind study; statistics are at the limit of significance level and finally some authors have huge conflicts of interest

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

The Case for Junk DNA

The Case for Junk DNA | plant cell genetics | Scoop.it

With the advent of deep sequencing technologies and the ability to analyze whole genome sequences and transcriptomes, there has been a growing interest in exploring putative functions of the very large fraction of the genome that is commonly referred to as “junk DNA.” Whereas this is an issue of considerable importance in genome biology, there is an unfortunate tendency for researchers and science writers to proclaim the demise of junk DNA on a regular basis without properly addressing some of the fundamental issues that first led to the rise of the concept. In this review, we provide an overview of the major arguments that have been presented in support of the notion that a large portion of most eukaryotic genomes lacks an organism-level function. Some of these are based on observations or basic genetic principles that are decades old, whereas others stem from new knowledge regarding molecular processes such as transcription and gene regulation.

 

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Hybridization Alters Spontaneous Mutation Rates in a Parent-of-Origin-Dependent Fashion in Arabidopsis

Hybridization Alters Spontaneous Mutation Rates in a Parent-of-Origin-Dependent Fashion in Arabidopsis | plant cell genetics | Scoop.it

Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col) × Cape Verde Islands and Col × C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col × C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col × Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

High-Efficiency Stable Transformation of the Model Fern Species Ceratopteris richardii via Microparticle Bombardment

High-Efficiency Stable Transformation of the Model Fern Species Ceratopteris richardii via Microparticle Bombardment | plant cell genetics | Scoop.it

Ferns represent the most closely related extant lineage to seed plants. The aquatic fern Ceratopteris richardii has been subject to research for a considerable period of time, but analyses of the genetic programs underpinning developmental processes have been hampered by a large genome size, a lack of available mutants, and an inability to create stable transgenic lines. In this paper, we report a protocol for efficient stable genetic transformation of C. richardii and a closely related species Ceratopteris thalictroides using microparticle bombardment. Indeterminate callus was generated and maintained from the sporophytes of both species using cytokinin treatment. In proof-of-principle experiments, a 35S::β-glucuronidase (GUS) expression cassette was introduced into callus cells via tungsten microparticles, and stable transformants were selected via a linked hygromycin B resistance marker. The presence of the transgene in regenerated plants and in subsequent generations was validated using DNA-blot analysis, reverse transcription-polymerase chain reaction, and GUS staining. GUS staining patterns in most vegetative tissues corresponded with constitutive gene expression. The protocol described in this paper yields transformation efficiencies far greater than those previously published and represents a significant step toward the establishment of a tractable fern genetic model.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Genomic Imprinting: Insights From Plants - Annual Review of Genetics, 47(1):187

Genomic Imprinting: Insights From Plants - Annual Review of Genetics, 47(1):187 | plant cell genetics | Scoop.it

Imprinted gene expression—the biased expression of alleles dependent on their parent of origin—is an important type of epigenetic gene regulation in flowering plants and mammals. In plants, genes are imprinted primarily in the endosperm, the triploid placenta-like tissue that surrounds and nourishes the embryo during its development. Differential allelic expression is correlated with active DNA demethylation by DNA glycosylases and repressive targeting by the Polycomb group proteins. Imprinted gene expression is one consequence of a large-scale remodeling to the epigenome, primarily directed at transposable elements, that occurs in gametes and seeds. This remodeling could be important for maintaining the epigenome in the embryo as well as for establishing gene imprinting.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Widespread and frequent horizontal transfers of transposable elements in plants

Widespread and frequent horizontal transfers of transposable elements in plants | plant cell genetics | Scoop.it
An international, peer-reviewed genome sciences journal featuring outstanding original research that offers novel insights into the biology of all organisms
Jean-Pierre Zryd's insight:

Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution.

more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Rice origins and cultural history
Scoop.it!

Cover Photo — April 29, 2014, 111 (17)

Cover Photo — April 29, 2014, 111 (17) | plant cell genetics | Scoop.it

29 April 2014. Cover of PNAS. The issue with the special feature on the "Modern View of Domestication". Cover image: Pictured are the Gamo-Gofa highlands of southern Ethiopia, a traditional agricultural landscape dotted with domesticated plants and animals such as hybrid cattle. Domesticated plants of diverse geographical origins include maize, sorghum, barley, Ethiopian banana, palm kale, and castor oil plant. The Modern View of Domestication Special Feature, appearing in this issue, presents recent genetic and archaeological evidence regarding the origin and spread of domesticated plants and animals, and addresses questions including those concerning the speed and intentionality of early domestication. See the Introduction to the Special Feature by Greger Larson et al. on pages 6139–6146. Image courtesy of Dorian Fuller.


Via Dorian Q Fuller
more...
Dorian Q Fuller's curator insight, April 29, 4:02 PM
have to show off my photo a little...
Scooped by Jean-Pierre Zryd
Scoop.it!

Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense

Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense | plant cell genetics | Scoop.it
Significance

Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. To date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. We found that tomato plants absorbed the airborne green leaf alcohol (Z)-3-hexenol emitted by neighboring conspecific plants under attack by herbivores and subsequently converted the alcohol to a glycoside. The glycoside suppressed growth and survival rates of cutworms. The accumulation of glycoside in the receiver plants explained the defense acquired via “smelling” their neighbors. This study showed that the processing of a volatile compound is a mechanism of volatile reception in tomato plants.

Abstract

Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.

Jean-Pierre Zryd's insight:

see also the article by Ed Yong on his blos of National Geographic Magazine

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Entomological Society of America Comparative Diversity of Arthropods on Bt Maize and Non-Bt Maize ...

The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing‐sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Ag Biotech News
Scoop.it!

Bringing light into the discussion about GMOs? – A rather long reading list

[updated 12 April, 2014]  

 

These days I received an apparently easy request: “Do you have any recommendations for reading about the debate on GMOs? I think there is a lot of heat, but too little light in the discussion; I trust you can send me some…” To which I answered carelessly: “Sure, I will look into it, select a few references and post them…” 

 

I thought I’d have a quick look into my collection of bookmarks and references and post some of the links to satisfy the request. Obviously there would be too many individual studies and crop-specific or country-specific reports, but focusing only (i) on what was published in recent years, (ii) on sources where all this information was already aggregated (literature reviews, meta-analyses, authoritative statements, FAQs, etc.), and (iii) on academic or publicly funded sources should produce a fairly concise list, I thought. 

 

While not unmanageable, the list has become quite long. To get a rough idea of the current state of knowledge, it may be sufficient to peruse the first 1-2 (starred *) references under each heading, and to have a quick look at the abstracts and summaries of some of the others. (Given the controversy surrounding this topic I did not want to suggest just one or two sources, but show a bit the width of the scientific consensus, and to offer some titbits of related information.) ... 

 

http://ajstein.tumblr.com/post/40504136918/
 

 


Via Alexander J. Stein
more...
Jennifer Mach's comment, March 30, 2013 6:05 AM
I admit I haven't read this list... but for future reference, I'll definitely have a look.
Scooped by Jean-Pierre Zryd
Scoop.it!

Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement | plant cell genetics | Scoop.it

Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Frontiers | Distinct evolutionary strategies in the GGPPS family from plants | Plant Evolution and Development

Multiple geranylgeranyl diphosphate synthases (GGPPS) for biosynthesis of geranylgeranyl diphosphate (GGPP) exist in plants. GGPP is produced in the isoprenoid pathway and is a central precursor for various primary and specialized plant metabolites. Therefore, its biosynthesis is an essential regulatory point in the isoprenoid pathway. We selected 119 GGPPSs from 48 species representing all major plant lineages, based on stringent homology criteria. After the diversification of land plants, the number of GGPPS paralogs per species increases. Already in the moss Physcomitrella patens, GGPPS appears to be encoded by multiple paralogous genes. In gymnosperms, neofunctionalization of GGPPS may have enabled optimized biosynthesis of primary and specialized metabolites. Notably, lineage-specific expansion of GGPPS occurred in land plants. As a representative species we focused here on Arabidopsis thaliana, which retained the highest number of GGPPS paralogs (twelve) among the 48 species we considered in this study. Our results show that the A. thaliana GGPPS gene family is an example of evolution involving neo- and subfunctionalization as well as pseudogenization. We propose subfunctionalization as one of the main mechanisms allowing the maintenance of multiple GGPPS paralogs in A. thaliana genome. Accordingly, the changes in the expression patterns of the GGPPS paralogs occurring after gene duplication led to developmental and/or condition specific functional evolution.
more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Large scale gene expression profiling data of the model moss Physcomitrella patens help to understand developmental progression, culture and stress conditions - Hiss - The Plant Journal - Wiley Onl...

Large scale gene expression profiling data of the model moss Physcomitrella patens help to understand developmental progression, culture and stress conditions - Hiss - The Plant Journal - Wiley Onl... | plant cell genetics | Scoop.it

The moss Physcomitrella patens is an important model organism to study plant evolution, development, physiology and biotechnology. Here, we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that i) growth stage is dominant over culture conditions, ii) liquid culture is not stressful for the plant, iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, iv) largely the same gene pool mediates response to de- and rehydration, and v) AP2/EREBP and NAC transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at "http://https://www.genevestigator.com" "https://www.genevestigator.com". By providing large scale expression profiles, the usability of this model organism is further enhanced, e.g. by enabling selection of control genes for quantitative Real Time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens

Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens | plant cell genetics | Scoop.it

Plant growth and development are constantly influenced by temperature fluctuations. To respond to temperature changes, different levels of gene regulation are modulated in the cell. Alternative splicing (AS) is a widespread mechanism increasing transcriptome complexity and proteome diversity. Although genome-wide studies have revealed complex AS patterns in plants, whether AS impacts the stress defense of plants is not known. We used heat shock (HS) treatments at nondamaging temperature and messenger RNA sequencing to obtain HS transcriptomes in the moss Physcomitrella patens. Data analysis identified a significant number of novel AS events in the moss protonema. Nearly 50% of genes are alternatively spliced. Intron retention (IR) is markedly repressed under elevated temperature but alternative donor/acceptor site and exon skipping are mainly induced, indicating differential regulation of AS in response to heat stress. Transcripts undergoing heat-sensitive IR are mostly involved in specific functions, which suggests that plants regulate AS with transcript specificity under elevated temperature. An exonic GAG-repeat motif in these IR regions may function as a regulatory cis-element in heat-mediated AS regulation. A conserved AS pattern for HS transcription factors in P. patens and Arabidopsis (Arabidopsis thaliana) reveals that heat regulation for AS evolved early during land colonization of green plants. Our results support that AS of specific genes, including key HS regulators, is fine-tuned under elevated temperature to modulate gene regulation and reorganize metabolic processes.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

French Rapeseed Trials Said Destroyed to Protest Mutated Crops

French Rapeseed Trials Said Destroyed to Protest Mutated Crops | plant cell genetics | Scoop.it
Activists destroyed experimental
fields of rapeseed plants in France this week to protest growing
of mutated crops, national oilseed researcher Cetiom said. (Anti-GMO activists destroy rapeseed trial crops in France.
Jean-Pierre Zryd's insight:

They probably would like to destroy all agriculture - it's just a step further

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Truncation of LEAFY COTYLEDON1 Protein Is Required for Asexual Reproduction in Kalanchoë daigremontiana

Truncation of LEAFY COTYLEDON1 Protein Is Required for Asexual Reproduction in Kalanchoë daigremontiana | plant cell genetics | Scoop.it

Asexual reproduction is the simplest form of reproduction, occurring in many plants and animals. Various members of the Kalanchoë genus reproduce asexually through the ectopic formation of plantlets directly from differentiated tissues in the leaf (Garcês et al., 2007). These ectopic plantlets can be formed constitutively in some species or induced in response to various environmental cues and stresses (Garcês and Sinha, 2009). Previously, we have shown that leaf plantlet formation among the constitutive Kalanchoë plantlet-forming species such as Kalanchoë daigremontiana occurs by coopting both organogenesis and embryogenesis programs into the leaves (Garcês et al., 2007). K. daigremontiana somatic embryos develop symmetrically along the leaf margins in serrations, following a developmental program that resembles zygotic embryogenesis. Mature plantlets detach from the mother leaf and grow into new plants. We previously showed that the embryogenic LEAFY CONTYLEDON1 (LEC1) ortholog KdLEC1 is expressed in both somatic and zygotic embryos of K. daigremontiana (Garcês et al., 2007). LEC1 is known as an embryonic key regulator that is required for normal embryo development during early morphogenesis and to initiate and/or maintain the maturation phase and inhibit precocious embryo germination late in embryogenesis

Jean-Pierre Zryd's insight:

Interesting parallel between somatic and zygotic embryogenesis

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Prospects of genetic engineering for robust insect resistance

Prospects of genetic engineering for robust insect resistance | plant cell genetics | Scoop.it

Secondary plant metabolites are potentially of great value for providing robust resistance in plants against insect pests. Such metabolites often comprise small lipophilic molecules (SLMs), and can be similar also in terms of activity to currently used insecticides, for example, the pyrethroids, neonicotinoids and butenolides, which provide more effective pest management than the resistance traits exploited by breeding. Crop plants mostly lack the SLMs that provide their wild ancestors with resistance to pests. However, resistance traits based on the biosynthesis of SLMs present promising new opportunities for crop resistance to pests. Advances in genetic engineering of secondary metabolite pathways that produce insecticidal compounds and, more recently, SLMs involved in plant colonisation and development, for example, insect pheromones, offer specific new approaches but which are more demanding than the genetic engineering approaches adopted so far. In addition, nature also offers various opportunities for exploiting induction or priming for resistance metabolite generation. Thus, use of non-constitutively expressed resistance traits delivered via the seed is a more sustainable approach than previously achieved, and could underpin development of perennial arable crops protected by sentinel plant technologies.

more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Sustainable agriculture and GMOs
Scoop.it!

Natural Compounds as Next Generation Herbicides

Natural Compounds as Next Generation Herbicides | plant cell genetics | Scoop.it

Herbicides with new modes of action (MOAs) are badly needed because of rapidly evolving resistance to commercial herbicides, for which a new MOA has not been introduced in more than 20 years. The biggest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly-used natural compounds and synthetic herbicides with new target sites based on the structure of natural phytotoxins. Natural phytotoxins are also a source of discovery of new herbicide target sites that can be the focus of traditional herbicide discovery efforts. The many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides indicate that there are herbicide molecular targets to be added to the current repertoire of commercial herbicide MOAs.


Via Jennifer Mach, Christophe Jacquet
more...
Mary Williams's curator insight, May 4, 6:03 AM

"All the pests that out of earth arise, the earth itself the
antidote supplies"- from a Lithica poem (c. 400 B.C) according to the authors.

Scooped by Jean-Pierre Zryd
Scoop.it!

Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens

more...
No comment yet.
Rescooped by Jean-Pierre Zryd from Protection phytosanitaire des fruits et légumes
Scoop.it!

PAN sur le BEC : Lettre ouverte au Canard Enchaîné (Mission AgroBioSciences) - ForumPhyto


Via ForumPhyto
Jean-Pierre Zryd's insight:

L'humour n'est pas toujours drôle

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins - Online First - Springer

Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins - Online First - Springer | plant cell genetics | Scoop.it

By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.

more...
No comment yet.
Scooped by Jean-Pierre Zryd
Scoop.it!

Kinesins Have a Dual Function in Organizing Microtubules during Both Tip Growth and Cytokinesis in Physcomitrella patens

Kinesins Have a Dual Function in Organizing Microtubules during Both Tip Growth and Cytokinesis in Physcomitrella patens | plant cell genetics | Scoop.it

Microtubules (MTs) play a crucial role in the anisotropic deposition of cell wall material, thereby affecting the direction of growth. A wide range of tip-growing cells display highly polarized cell growth, and MTs have been implicated in regulating directionality and expansion. However, the molecular machinery underlying MT dynamics in tip-growing plant cells remains unclear. Here, we show that highly dynamic MT bundles form cyclically in the polarized expansion zone of the moss Physcomitrella patens caulonemal cells through the coalescence of growing MT plus ends. Furthermore, the plant-specific kinesins (KINID1) that are is essential for the proper MT organization at cytokinesis also regulate the turnover of the tip MT bundles as well as the directionality and rate of cell growth. The plus ends of MTs grow toward the expansion zone, and KINID1 is necessary for the stability of a single coherent focus of MTs in the center of the zone, whose formation coincides with the accumulation of KINID1. We propose that KINID-dependent MT bundling is essential for the correct directionality of growth as well as for promoting growth per se. Our findings indicate that two localized cell wall deposition processes, tip growth and cytokinesis, previously believed to be functionally and evolutionarily distinct, share common and plant-specific MT regulatory components.

more...
No comment yet.