Plant Breeding an...
Follow
Find
18.8K views | +6 today
Plant Breeding and Genomics News
Plant Breeding and Genomics News
Your new post is loading...
Your new post is loading...
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Plant Biology | Abstract | Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping

Background: Higher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality. Results: Pronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content. Conclusions: The combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP's diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Bioinformatics | Abstract | Surface feature based classiffication of plant organs from 3D laserscanned point clouds for plant phenotyping

Background

Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization.

Results

A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0:3 and 4:0 mm with respect to the classification accuracy.

Conclusions

We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of high throughput phenotyping.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Natural variation and artificial selection in four genes determine grain shape in rice - Lu - 2013 - New Phytologist - Wiley Online Library

Natural variation and artificial selection in four genes determine grain shape in rice - Lu - 2013 - New Phytologist - Wiley Online Library | Plant Breeding and Genomics News | Scoop.it
SummaryThe size of cultivated rice (Oryza sativa) grains has been altered by both domestication and artificial selection over the course of evolutionary history. Several quantitative trait loci (QTLs) for grain size have been cloned in the past 10 yr. To explore the natural variation in these QTLs, resequencing of grain width and weight 2 (GW2), grain size 5 (GS5) and QTL for seed width 5 (qSW5) and genotyping of grain size 3 (GS3) were performed in the germplasms of 127 varieties of rice (O. sativa) and 10–15 samples of wild rice (Oryza rufipogon).Ten, 10 and 15 haplotypes were observed for GW2, GS5 and qSW5. qSW5 and GS3 had the strongest effects on grain size, which have been widely utilized in rice production, whereas GW2 and GS5 showed more modest effects.GS5 showed small sequence variations in O. sativa germplasm and that of its progenitor O. rufipogon. qSW5 exhibited the highest level of nucleotide diversity. GW2 showed signs of purifying selection. The four grain size genes experienced different selection intensities depending on their genetic effects. In the indica population, linkage disequilibrium (LD) was detected among GS3, qSW5and GS5.The substantial genetic variation in these four genes provides the flexibility needed to design various rice grain shapes. These findings provide insight into the evolutionary features of grain size genes in rice.
more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences

The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang-You-Pei-Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93-11 and maternal cultivar PA64s of Liang-You-Pei-Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

On the importance of balancing selection in plants - Delph - 2013 - New Phytologist - Wiley Online Library

On the importance of balancing selection in plants - Delph - 2013 - New Phytologist - Wiley Online Library | Plant Breeding and Genomics News | Scoop.it

Balancing selection refers to a variety of selective regimes that maintain advantageous genetic diversity within populations. We review the history of the ideas regarding the types of selection that maintain such polymorphism in flowering plants, notably heterozygote advantage, negative frequency-dependent selection, and spatial heterogeneity. One shared feature of these mechanisms is that whether an allele is beneficial or detrimental is conditional on its frequency in the population. We highlight examples of balancing selection on a variety of discrete traits. These include the well-referenced case of self-incompatibility and recent evidence from species with nuclear-cytoplasmic gynodioecy, both of which exhibit trans-specific polymorphism, a hallmark of balancing selection. We also discuss and give examples of how spatial heterogeneity in particular, which is often thought unlikely to allow protected polymorphism, can maintain genetic variation in plants (which are rooted in place) as a result of microhabitat selection. Lastly, we discuss limitations of the protected polymorphism concept for quantitative traits, where selection can inflate the genetic variance without maintaining specific alleles indefinitely. We conclude that while discrete-morph variation provides the most unambiguous cases of protected polymorphism, they represent only a fraction of the balancing selection at work in plants.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Plant Genomics Congress USA

Plant Genomics Congress USA | Plant Breeding and Genomics News | Scoop.it
Plant Genomics Congress USA. NGS
solutions for the plant research sector.
more...
CRuiz.11.al.unav's curator insight, November 23, 9:52 AM

Los congresos permiten el intercambio de información y, por tanto, mayor avance en la investigación. Se puede informar de riesgos y medidas de seguridad para evitar errores potencialmente catastróficos.

Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants

Background: The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. Results: In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Conclusions: Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

allAfrica.com: Uganda: USAID - Feed the Future Project to Boost Agricultural Production and Marketing

allAfrica.com: Uganda: USAID - Feed the Future Project to Boost Agricultural Production and Marketing | Plant Breeding and Genomics News | Scoop.it

U.S. Agency for International Development (USAID) has launched the feed the future commodity production and Marketing Activity in Uganda.

 

The projects will be implemented in 34 feed the future focus districts and aims to reach 400,000 farmers. The districts were selected using several criteria including their production potential of three priority crops including maize, beans and coffee.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes

Background: Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Results: Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso x Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2--6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. Conclusions: The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso x Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Resistance gene enrichment sequencing (RenSeq) enables re-annotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations - Jupe - ...

Resistance gene enrichment sequencing (RenSeq) enables re-annotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations - Jupe - ... | Plant Breeding and Genomics News | Scoop.it

RenSeq is a NB-LRR gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosumclone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly- or previous un-annotated regions of the genome. Sequence and positional details on the twelve chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a trait of interest. In two independent segregating populations involving the wild Solanumspecies S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq to successfully identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach

Background: Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower inbred lines that represent oil as well as confection types. Results: A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated across six diverse sunflower lines. Conclusion: Here we report the molecular and computational methodology involved in SNP development for a complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding purposes in sunflower.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Gap between science and media revisited: Scientists as public communicators

The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty-an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range

Plant Breeding and Genomics News's insight:
Background

Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime.

Results

To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306.

Conclusions

Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.

more...
Edel Perez Lopez's curator insight, August 23, 2013 8:29 AM

Very Interesting !!

Scooped by Plant Breeding and Genomics News
Scoop.it!

Trends in Biotechnology - Does genomic selection have a future in plant breeding?

Summary

Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genetics | Abstract | Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India

Background: Adaptations to different habitats across the globe and consequent genetic variation within rice have resulted in more than 120,000 diverse accessions including landraces, which are vital genetic resources for agronomic and quality traits. In India the rice landraces of the states West Bengal, Assam, Mizoram, Manipur and Nagaland are worthy candidates for genetic assessment. Keeping the above in view, the present study was conducted with the aim to (i) calculate the genetic distances among the accessions of 83 landraces collected from these states along with 8 check accessions (total 91 accessions) using 23 previously mapped SSR markers and (ii) examine the population structure among the accessions using model-based clustering approach. Results: Among the 91 accessions, 182 alleles were identified which included 51 rare and 27 null alleles. The average PIC value was 0.7467/marker. The non-aromatic landraces from West Bengal was most diverse with 154 alleles and an average PIC value of 0.8005/marker, followed by the aromatic landraces from West Bengal with 118 alleles and an average PIC value of 0.6524/marker, while the landraces from North East ranked third with 113 alleles and an average PIC value of 0.5745/marker. In the dendrogram distinct clusters consisting of predominantly aromatic landraces and predominantly North East Indian landraces were observed. The non-aromatic landraces from West Bengal were interspersed within these two clusters. The accessions were moderately structured, showing four sub-populations (A-D) with an Fst value of 0.398, 0.364, 0.206 and 0.281, respectively. The assigned clustering of accessions was well in agreement in both distance-based and model-based approaches. Conclusions: Each of the accessions could be identified unequivocally by the SSR profiles. Genetically the non aromatic landraces from West Bengal were most diverse followed by the aromatic landraces from the same state. The North Eastern accessions ranked third. Further, grouping of accessions based on their agronomic traits may serve as a resource for future studies, leading to the improvement of rice. Moreover in-situ preservation of the landraces is also a means of protection of biodiversity and cultural heritage. 
more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

PLOS ONE: Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley

PLOS ONE: Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley | Plant Breeding and Genomics News | Scoop.it

Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

PLOS ONE: Genetic Architecture of Delayed Senescence, Biomass, and Grain Yield under Drought Stress in Cowpea

PLOS ONE: Genetic Architecture of Delayed Senescence, Biomass, and Grain Yield under Drought Stress in Cowpea | Plant Breeding and Genomics News | Scoop.it

The stay-green phenomenon is a key plant trait with wide usage in managing crop production under limited water conditions. This trait enhances delayed senescence, biomass, and grain yield under drought stress. In this study we sought to identify QTLs in cowpea (Vigna unguiculata) consistent across experiments conducted in Burkina Faso, Nigeria, Senegal, and the United States of America under limited water conditions. A panel of 383 diverse cowpea accessions and a recombinant inbred line population (RIL) were SNP genotyped using an Illumina 1536 GoldenGate assay. Phenotypic data from thirteen experiments conducted across the four countries were used to identify SNP-trait associations based on linkage disequilibrium association mapping, with bi-parental QTL mapping as a complementary strategy. We identified seven loci, five of which exhibited evidence suggesting pleiotropic effects (stay-green) between delayed senescence, biomass, and grain yield. Further, we provide evidence suggesting the existence of positive pleiotropy in cowpea based on positively correlated mean phenotypic values (0.34< r <0.87) and allele effects (0.07< r <0.86) for delayed senescence and grain yield across three African environments. Three of the five putative stay-green QTLs, Dro-1, 3, and 7 were identified in both RILs and diverse germplasm with resolutions of 3.2 cM or less for each of the three loci, suggesting that these may be valuable targets for marker-assisted breeding in cowpea. Also, the co-location of early vegetative delayed senescence with biomass and grain yield QTLs suggests the possibility of using delayed senescence at the seedling stage as a rapid screening tool for post-flowering drought tolerance in cowpea breeding. BLAST analysis using EST sequences harboring SNPs with the highest associations provided a genomic context for loci identified in this study in closely related common bean (Phaseolus vulgaris) and soybean (Glycine max) reference genomes.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

2014 Tucson Winter Institute in Plant Breeding, January 6th-10th, 2014.

2014 Tucson Winter Institute in Plant Breeding,  January 6th-10th, 2014. | Plant Breeding and Genomics News | Scoop.it

The BIO5 Institute at the University of Arizona is pleased to announce the 2014 Tucson Winter Institute in Plant Breeding, to be held the week of January 6th-10th, 2014. 

 The goal of the Institute is to offer state-of-the-art instruction and training in modern plant breeding tools such as statistics, molecular breeding, and computation.  While plant breeding is among humankind's oldest and most important endeavors, it remains a highly dynamic field. There is a constant flux of new technologies for plant improvement, such as advances in genomics, bioinformatics, high throughput phenotyping, and new statistical approaches for selection, gene mapping, and GxE interactions. The Tucson Winter Institute in Plant Breeding through the BIO5 Institute and the iPlant initiative offers breeders state-of-the art training in these modern tools. 

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Can Quinoa Farming Go Global Without Leaving Andeans Behind? : NPR

Can Quinoa Farming Go Global Without Leaving Andeans Behind? : NPR | Plant Breeding and Genomics News | Scoop.it
At a "quinoa summit" this week, farmers from around the world are trading tips on how to turn this ancient Andean grain into a large-scale crop. Some Andean farmers who currently grow quinoa are asking, "What happens to us?
Plant Breeding and Genomics News's insight:

NPR picks up eOrganic's recent webinar from the Quinoa summit at Washington State University. View recording at http://www.extension.org/pages/68467.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Bioinformatics | Abstract | GRank: a middleware search engine for ranking genes by relevance to given genes

Background: Biologists may need to know the set of genes that are semantically related to a given set of genes. For instance, a biologist may need to know the set of genes related to another set of genes known to be involved in a specific disease. Some works use the concept of gene clustering in order to identify semantically related genes. Others propose tools that return the set of genes that are semantically related to a given set of genes. Most of these gene similarity measures determine the semantic similarities among the genes based solely on the proximity to each other of the GO terms annotating the genes, while overlook the structural dependencies among these GO terms, which may lead to low recall and precision of results. Results: We propose in this paper a search engine called GRank, which overcomes the limitations of the current gene similarity measures outlined above as follows. It employs the concept of existence dependency to determine the structural dependencies among the GO terms annotating a given set of gene. After determining the set of genes that are semantically related to input genes, GRank would use microarray experiment to rank these genes based on their degree of relativity to the input genes. We evaluated GRank experimentally and compared it with a comparable gene prediction tool called DynGO, which retrieves the genes and gene products that are relatives of input genes. Results showed marked improvement. Conclusions: The experimental results demonstrated that GRank overcomes the limitations of current gene similarity measures. We attribute this performance to GRank's use of existence dependency concept for determining the semantic relationships among gene annotations. The recall and precision values for two benchmarking datasets showed that GRank outperforms DynGO tool, which does not employ the concept of existence dependency. The demo of GRank using 11000 KEGG yeast genes and a Gene Expression Omnibus (GEO) microarray file named "GSM34635.pad" is available at: http://ecesrvr.kustar.ac.ae:8080/ (click on the link labelled Gene Ontology 2).  
more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing

Background: Longan is a tropical/subtropical fruit tree of great economic importance in Southeast Asia. Progress in understanding molecular mechanisms of longan embryogenesis, which is the primary influence on fruit quality and yield, is slowed by lack of transcriptomic and genomic information. Illumina second generation sequencing, which is suitable for generating enormous numbers of transcript sequences that can be used for functional genomic analysis of longan. Results: In this study, a longan embryogenic callus (EC) cDNA library was sequenced using an Illumina HiSeq 2000 system. A total of 64,876,258 clean reads comprising 5.84 Gb of nucleotides were assembled into 68,925 unigenes of 448-bp mean length, with unigenes >=1000 bp accounting for 8.26% of the total. Using BLASTx, 40,634 unigenes were found to have significant similarity with accessions in Nr and Swiss- Prot databases. Of these, 38,845 unigenes were assigned to 43 GO sub-categories and 17,118 unigenes were classified into 25 COG sub-groups. In addition, 17,306 unigenes mapped to 199 KEGG pathways, with the categories of Metabolic pathways, Plant-pathogen interaction, Biosynthesis of secondary metabolites, and Genetic information processing being well represented. Analyses of unigenes >=1000 bp revealed 328 embryogenesis-related unigenes as well as numerous unigenes expressed in EC associated with functions of reproductive growth, such as flowering, gametophytogenesis, and fertility, and vegetative growth, such as root and shoot growth. Furthermore, 23 unigenes related to embryogenesis and reproductive and vegetative growth were validated by quantitative real time PCR (qPCR) in samples from different stages of longan somatic embryogenesis (SE); their differentially expressions in the various embryogenic cultures indicated their possible roles in longan SE. Conclusions: The quantity and variety of expressed EC genes identified in this study is sufficient to serve as a global transcriptome dataset for longan EC and to provide more molecular resources for longan functional genomics.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana

Plant Breeding and Genomics News's insight:

Background: Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results: Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions: Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Mutational Breeding and Genetic Engineering in the Development of High Grain Protein Content - Journal of Agricultural and Food Chemistry (ACS Publications)

Mutational Breeding and Genetic Engineering in the Development of High Grain Protein Content - Journal of Agricultural and Food Chemistry (ACS Publications) | Plant Breeding and Genomics News | Scoop.it

Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important, therefore, to improve grain protein quality. Highly nutritious grain can be tailored to functional foods to meet the needs for both specific individuals and human populations as a whole.

 
more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

Bridging the gap between science and decision making

All decisions, whether they are personal, public, or business-related, are based on the decision maker's beliefs and values. Science can and should help decision makers by shaping their beliefs. Unfortunately, science is not easily accessible to decision makers, and scientists often do not understand decision makers' information needs. This article presents a framework for bridging the gap between science and decision making and illustrates it with two examples. The first example is a personal health decision. It shows how a formal representation of the beliefs and values can reflect scientific inputs by a physician to combine with the values held by the decision maker to inform a medical choice. The second example is a public policy decision about managing a potential environmental hazard. It illustrates how controversial beliefs can be reflected as uncertainties and informed by science to make better decisions. Both examples use decision analysis to bridge science and decisions. The conclusions suggest that this can be a helpful process that requires skills in both science and decision making.

more...
No comment yet.
Scooped by Plant Breeding and Genomics News
Scoop.it!

BMC Genomics | Abstract | De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading

Background

Litchi (Litchi chinensis Sonn.) is one of the most important fruit trees cultivated in tropical and subtropical areas. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying fruit set and fruit development in litchi. Shading during early fruit development decreases fruit growth and induces fruit abscission. Here, high-throughput RNA sequencing (RNA-Seq) was employed for the de novo assembly and characterization of the fruit transcriptome in litchi, and differentially regulated genes, which are responsive to shading, were also investigated using digital transcript abundance(DTA)profiling.

Results

More than 53 million paired-end reads were generated and assembled into 57,050 unigenes with an average length of 601 bp. These unigenes were annotated by querying against various public databases, with 34,029 unigenes found to be homologous to genes in the NCBI GenBank database and 22,945 unigenes annotated based on known proteins in the Swiss-Prot database. In further orthologous analyses, 5,885 unigenes were assigned with one or more Gene Ontology terms, 10,234 hits were aligned to the 24 Clusters of Orthologous Groups classifications and 15,330 unigenes were classified into 266 Kyoto Encyclopedia of Genes and Genomes pathways. Based on the newly assembled transcriptome, the DTA profiling approach was applied to investigate the differentially expressed genes related to shading stress. A total of 3.6 million and 3.5 million high-quality tags were generated from shaded and non-shaded libraries, respectively. As many as 1,039 unigenes were shown to be significantly differentially regulated. Eleven of the 14 differentially regulated unigenes, which were randomly selected for more detailed expression comparison during the course of shading treatment, were identified as being likely to be involved in the process of fruitlet abscission in litchi.

Conclusions

The assembled transcriptome of litchi fruit provides a global description of expressed genes in litchi fruit development, and could serve as an ideal repository for future functional characterization of specific genes. The DTA analysis revealed that more than 1000 differentially regulated unigenes respond to the shading signal, some of which might be involved in the fruitlet abscission process in litchi, shedding new light on the molecular mechanisms underlying organ abscission.

more...
No comment yet.