Papers
424.6K views | +10 today
Follow
Papers
Recent publications related to complex systems
Your new post is loading...
Your new post is loading...
Rescooped by Complexity Digest from Statistical Physics of Ecological Systems
Scoop.it!

Cooperation, competition and the emergence of criticality in communities of adaptive systems

The hypothesis that living systems can benefit from operating at the vicinity of critical points has gained momentum in recent years. Criticality may confer an optimal balance between too ordered and exceedingly noisy states. Here we present a model, based on information theory and statistical mechanics, illustrating how and why a community of agents aimed at understanding and communicating with each other converges to a globally coherent state in which all individuals are close to an internal critical state, i.e. at the borderline between order and disorder. We study—both analytically and computationally—the circumstances under which criticality is the best possible outcome of the dynamical process, confirming the convergence to critical points under very generic conditions. Finally, we analyze the effect of cooperation (agents trying to enhance not only their fitness, but also that of other individuals) and competition (agents trying to improve their own fitness and to diminish those of competitors) within our setting. The conclusion is that, while competition fosters criticality, cooperation hinders it and can lead to more ordered or more disordered consensual outcomes.

Via Samir
more...
No comment yet.
Scooped by Complexity Digest
Scoop.it!

Growth dynamics and the evolution of cooperation in microbial populations

Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.

more...
No comment yet.
Rescooped by Complexity Digest from Statistical Physics of Ecological Systems
Scoop.it!

Predation risk drives social complexity in cooperative breeders

It is widely accepted that high predation risk may select for group living, but predation is not regarded as a primary driver of social complexity. This view neglects the important effect of predation on dispersal and offspring survival, which may require cooperation among group members. The significance of predation for the evolution of social complexity can be well illustrated by behavioral and morphological adaptations of highly social animals showing division of labor, such as eusocial insects and cooperatively breeding fishes. By examining the diversity of social organization in a cooperative cichlid in relation to ecological variation, we show that predation risk has the greatest explanatory power of social complexity. This stresses the significance of predation for social evolution.

Via Samir
more...
No comment yet.
Scooped by Complexity Digest
Scoop.it!

Collaboration in social networks

The very notion of social network implies that linked individuals interact repeatedly with each other. This notion allows them not only to learn successful strategies and adapt to them, but also to condition their own behavior on the behavior of others, in a strategic forward looking manner. Game theory of repeated games shows that these circumstances are conducive to the emergence of collaboration in simple games of two players. We investigate the extension of this concept to the case where players are engaged in a local contribution game and show that rationality and credibility of threats identify a class of Nash equilibria—that we call “collaborative equilibria”—that have a precise interpretation in terms of subgraphs of the social network. For large network games, the number of such equilibria is exponentially large in the number of players. When incentives to defect are small, equilibria are supported by local structures whereas when incentives exceed a threshold they acquire a nonlocal nature, which requires a “critical mass” of more than a given fraction of the players to collaborate. Therefore, when incentives are high, an individual deviation typically causes the collapse of collaboration across the whole system. At the same time, higher incentives to defect typically support equilibria with a higher density of collaborators. The resulting picture conforms with several results in sociology and in the experimental literature on game theory, such as the prevalence of collaboration in denser groups and in the structural hubs of sparse networks.

more...
No comment yet.