Environment, Forests, Water, Fishing, Farming
7.2K views | +1 today
Environment, Forests, Water, Fishing, Farming
If no farmland and no forests and no water and no fish - then what?
Curated by pdeppisch
Your new post is loading...
Your new post is loading...
Rescooped by pdeppisch from Aggregate Demand and Supply

In the future, will farming be fully automated? - BBC News

In the future, will farming be fully automated? - BBC News | Environment, Forests, Water, Fishing, Farming | Scoop.it
The world needs to produce more food to feed a growing population, but is automation and sensor technology the answer?

Via Graham Watson, Bruce Fellowes
Graham Watson's curator insight, November 25, 2016 2:21 AM
Having mentioned technology in the context of aviation, it seems apt that I'm also 'scooping' an article about how automation might have positive implications for agricultural productivity and food production. This article looks at the growth of the agricultural robotics sector, which has come a long way since the invention of the scarecrow.
Rescooped by pdeppisch from sustainable architecture

SHADE: A Solar Home Adapts for Sustainable Desert Living

SHADE: A Solar Home Adapts for Sustainable Desert Living | Environment, Forests, Water, Fishing, Farming | Scoop.it

Team ASUNM, a collaborative effort between Arizona State University and University of New Mexico, has come together to address the inefficiencies of urban sprawl and to create a model for sustainable desert living, dubbed SHADE (Solar Home Adapting for Desert Equilibrium), which is an entry in the Solar Decathlon 2013 competition that takes place on October 3-13, 2013 in Irvine, California.


Using external vertical screens and a solar canopy for shade, the SHADE home experiences a stable, consistent temperature with the use of a radiant cooling system used alongside an air cooling unit. Team ASUNM is exploring the residential application of thermal storage to chill water at night to create ice that cools a glycol solution during the day.

Via Lauren Moss
Pedro Barbosa's curator insight, July 18, 2013 4:15 AM

Exploring the deserts as a place to live may be a trend for the next decades or centuries. Here is one of the best approaches


Pedro Barbosa | www.pbarbosa.com | www.harvardtrends.com | www.theendoffacebook.com

gawlab's curator insight, July 18, 2013 3:28 PM

would love to know about existence of such solutions in Africa..


Rescooped by pdeppisch from Amazing Science

New generator creates electricity directly from heat

New generator creates electricity directly from heat | Environment, Forests, Water, Fishing, Farming | Scoop.it

A new type of thermionic generator that turns heat or light into electrical energy has been developed by researchers in Germany and the US. The new design overcomes the "space-charge problem" that has plagued previous attempts at developing practical devices. The device is about four times more efficient than previous generators and the new technology could find use in a range of applications including solar power and the harvesting of waste heat.


Thermionic generators convert heat or light into an electric current by using the temperature difference between two metallic plates that are separated by a vacuum. The "hot" plate is heated either by incident light or thermal conduction and this causes electrons to evaporate from its surface. These electrons then condense on the surface of the cold plate. This creates a charge difference between the two plates, which can drive a usable electric current.


Because they convert heat or light directly into electrical energy, thermionic generators have considerable potential for practical applications. If used in coal-fired power stations, for example, thermionic converters would, in principle, be more efficient than steam turbines. Thermionic generators could also be applied to a variety of lower-temperature applications, such as the collection of solar energy or the recycling of waste heat in car engines.


Neil Fox of the University of Bristol in the UK points out that the new generator has similarities to a planar triode design tested at the Massachusetts Institute of Technology (MIT) in the late 1950s. This previous design had suffered from energy loses caused by electron–electron collisions and scattering. "[Mannhart and colleagues] have come up with a rather neat vertical triode structure that seeks to improve on the MIT device, by incorporating beam collimating concepts similar to those used in particle accelerators," explains Fox. "The data presented...show that this magnetic triode is a significant improvement over a closed-spaced diode, but suggests that electron–electron collisions and scattering losses to the gate are still present."


The team is now working to increase the efficiency of its generator design in two ways. First, it is building high-performance converters from existing semiconductor technologies. Second, it is optimizing its electrodes through the use of new materials, especially oxides, and nanotechnology.


The work is described in the Journal of Renewable and Sustainable Energy.

Via Dr. Stefan Gruenwald
No comment yet.