Non-Equilibrium S...
Follow
14.8K views | +4 today
Non-Equilibrium Social Science
This is the Scoop.it! for NESS - Non-Equilibrium Social Sciences. For more about the NESS community please go to our website http://www.nessnet.eu
Curated by NESS
Your new post is loading...
Your new post is loading...
Rescooped by NESS from Aggregate Intelligence
Scoop.it!

Predicting Successful Memes using Network and Community Structure

Predicting Successful Memes using Network and Community Structure | Non-Equilibrium Social Science | Scoop.it

Via luiy, Shaolin Tan, António F Fonseca
more...
luiy's curator insight, March 27, 1:44 PM

We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.

António F Fonseca's curator insight, April 2, 6:01 AM

Another paper about popularity prediction.

Rescooped by NESS from Influence et contagion
Scoop.it!

Study maps Twitter’s information ecosystem

Study maps Twitter’s information ecosystem | Non-Equilibrium Social Science | Scoop.it
New research outlines the six types of communities on the social network and what that means for communication

Via luiy
more...
António F Fonseca's curator insight, March 1, 7:59 AM

What community do you belong to?

Eli Levine's curator insight, March 1, 4:24 PM

Indeed, we each live in our own world, not in the real world per se.

 

Some, however, have a more accurate understanding of the real world and are willing to acknowledge their shortcomings.

 

The others, who are less inclined to explore and are more focused on their own self-production, just happen to be known as conservative in our culture.  Hence, they area always hindered from perceiving the real world in the strictest of senses, and are not likely to change in light of new information received from the outside world.

 

Non-adapting humans will equal a dead and dying species.  It's a shame, though, that we can be dragged down by them for our lack of effective effort and action.

 

Sad.

 

Think about it.

Fàtima Galan's curator insight, March 3, 2:44 AM

"The topographical "maps" of these communities, generated by Pew using the data visualization tool NodeXL, aren’t just maps of relationships. They represent the channels of information in Twitter’s vast ecosystem, the roads and throughways, stoops and street corners in each topical neighborhood where users congregate and swap news and anecdotes."

Rescooped by NESS from Influence et contagion
Scoop.it!

Competition among memes in a world with limited attention

Competition among memes in a world with limited attention | Non-Equilibrium Social Science | Scoop.it
The wide adoption of social media has increased the competition among ideas for our finite attention. We employ a parsimonious agent-based model to study whether such a competition may affect the popularity of different memes, the diversity of information we are exposed to, and the fading of our collective interests for specific topics. Agents share messages on a social network but can only pay attention to a portion of the information they receive. In the emerging dynamics of information diffusion, a few memes go viral while most do not. The predictions of our model are consistent with empirical data from Twitter, a popular microblogging platform. Surprisingly, we can explain the massive heterogeneity in the popularity and persistence of memes as deriving from a combination of the competition for our limited attention and the structure of the social network, without the need to assume different intrinsic values among ideas.

Via luiy
more...
luiy's curator insight, February 22, 8:06 AM

Here we outline a number of empirical findings that motivate both our question and the main assumptions behind our model. We then describe the proposed agent-based toy model of meme diffusion and compare its predictions with the empirical data. Finally we show that the social network structure and our finite attention are both key ingredients of the diffusion model, as their removal leads to results inconsistent with the empirical data.

 

-----------------------------

Limited attention


We first explore the competition among memes. In particular, we test the hypothesis that the attention of a user is somewhat independent from the overall diversity of information discussed in a given period. Let us quantify the breadth of attention of a user through Shannon entropy S = −Σi f(i) log f(i) where f(i) is the proportion of tweets generated by the user about meme i. Given a user who has posted n messages, her entropy can be as small as 0, if all of her posts are about the same meme; or as large as log n if she has posted a message about each of n different memes. We can measure the diversity of the information available in the system analogously, defining f(i) as the proportion of tweets about meme i across all users. Note that these entropy-based measures are subject to the limits of our operational definition of a meme; finer or coarser definitions would yield different values.

 

John Caswell's curator insight, March 2, 8:23 AM

Very intetesting! Attention spans!