Neuroscience_topics
Follow
Find tag "autism"
19.1K views | +1 today
Neuroscience_topics
Neuroscience: CNS disease, pain, brain research, ion channels, synaptic transmission, channelopathies, neuronal network
Your new post is loading...
Your new post is loading...
Scooped by Julien Hering, PhD
Scoop.it!

Autism as a disorder of prediction

Autism as a disorder of prediction | Neuroscience_topics | Scoop.it

Autism is characterized by diverse behavioral traits. Guided by theoretical considerations and empirical data, this paper develops the hypothesis that many of autism's salient traits may be manifestations of an underlying impairment in predictive abilities. This impairment renders an otherwise orderly world to be experienced as a capriciously “magical” one. The hypothesis elucidates the information-processing roots of autism and, thereby, can aid the identification of neural structures likely to be differentially affected. Behavioral and neural measures of prediction might serve as early assays of predictive abilities in infants, and serve as useful tools in intervention design and in monitoring their effectiveness. The hypothesis also points to avenues for further research to determine molecular and circuit-level causal underpinnings of predictive impairments.(...) - by Sinha P et al., PNAS,  vol. 111 no. 42, 15220–15225, doi: 10.1073/pnas.1416797111

more...
No comment yet.
Scooped by Julien Hering, PhD
Scoop.it!

Physical Therapy In Autism Spectrum Disorders

Physical Therapy In Autism Spectrum Disorders | Neuroscience_topics | Scoop.it

The CDC estimated a 1% worldwide prevalence for autism spectrum disorders (ASD). In the United States, 1 out of 88 kids is diagnosed with ASD (according to data from a survey conducted in 2008). Autism spectrum disorders are characterized by diminished social interaction skills, stereotypic engagement in repetitive tasks, lengthy visual engagement with a target, refusal to deviate from set rituals and diminished spontaneity in expressing emotions. In addition to behavioral difficulties, reduced motor abilities are also reported. (...) - by Shefali Sabharanjak, PhDBrain Blogger, February 27, 2013

more...
Saman Zafar's curator insight, May 4, 2013 9:50 AM

hence, therapeutic sessions where the participants are asked to observe and learn from the actions of therapist are likely to succeed in children suffering from Autism Spectrum Disorder. 

Scooped by Julien Hering, PhD
Scoop.it!

Rewiring the Autistic Brain

Rewiring the Autistic Brain | Neuroscience_topics | Scoop.it

Signs of autism—such as impaired social skills and repetitive, ritualistic movements—usually begin to appear when a child is about 18 months old. Autism is thought to result from miswired connections in the developing brain, and many experts believe that therapies must begin during a "critical window," before the faulty circuits become fixed in place. But a new study online today in Science shows that at least one malfunctioning circuit can be repaired after that window closes, holding out hope that in some forms of autism, abnormal circuits in the brain can be corrected even after their development is complete. - by Elizabeth NortonScienceNOW, 13 September 2012

more...
No comment yet.
Scooped by Julien Hering, PhD
Scoop.it!

A Model of Functional Brain Connectivity and Background Noise as a Biomarker for Cognitive Phenotypes: Application to Autism

A Model of Functional Brain Connectivity and Background Noise as a Biomarker for Cognitive Phenotypes: Application to Autism | Neuroscience_topics | Scoop.it

We present an efficient approach to discriminate between typical and atypical brains from macroscopic neural dynamics recorded as magnetoencephalograms (MEG). Our approach is based on the fact that spontaneous brain activity can be accurately described with stochastic dynamics, as a multivariate Ornstein-Uhlenbeck process (mOUP). By fitting the data to a mOUP we obtain: 1) the functional connectivity matrix, corresponding to the drift operator, and 2) the traces of background stochastic activity (noise) driving the brain. We applied this method to investigate functional connectivity and background noise in juvenile patients (n = 9) with Asperger’s syndrome, a form of autism spectrum disorder (ASD), and compared them to age-matched juvenile control subjects (n = 10). Our analysis reveals significant alterations in both functional brain connectivity and background noise in ASD patients. The dominant connectivity change in ASD relative to control shows enhanced functional excitation from occipital to frontal areas along a parasagittal axis. Background noise in ASD patients is spatially correlated over wide areas, as opposed to control, where areas driven by correlated noise form smaller patches. An analysis of the spatial complexity reveals that it is significantly lower in ASD subjects. Although the detailed physiological mechanisms underlying these alterations cannot be determined from macroscopic brain recordings, we speculate that enhanced occipital-frontal excitation may result from changes in white matter density in ASD, as suggested in previous studies. We also venture that long-range spatial correlations in the background noise may result from less specificity (or more promiscuity) of thalamo-cortical projections. All the calculations involved in our analysis are highly efficient and outperform other algorithms to discriminate typical and atypical brains with a comparable level of accuracy. Altogether our results demonstrate a promising potential of our approach as an efficient biomarker for altered brain dynamics associated with a cognitive phenotype. (...) - by Dominguer LG et al., PLoS ONE 8(4): e61493

more...
No comment yet.
Scooped by Julien Hering, PhD
Scoop.it!

Autism symptoms reversed in mice

Autism symptoms reversed in mice | Neuroscience_topics | Scoop.it
Neural 'hyperconnections' caused by runaway protein production can be undone.

As diagnoses of autism spectrum disorder rise, the need for effective therapies has increased in urgency. Today, a paper in Nature describes two ways of reversing autism-like symptoms in a new mouse model of the condition. (...) - by Dan Jones, Nature news, 21 November 2012


Source :  Gkogkas, C. G. et al. Nature 

more...
No comment yet.
Scooped by Julien Hering, PhD
Scoop.it!

Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice

Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice | Neuroscience_topics | Scoop.it

Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders1, but the underlying pathogenesis remains poorly understood. Recent studies have implicated the cerebellum in these disorders, with post-mortem studies in ASD patients showing cerebellar Purkinje cell (PC) loss2, 3, and isolated cerebellar injury has been associated with a higher incidence of ASDs4. However, the extent of cerebellar contribution to the pathogenesis of ASDs remains unclear. Tuberous sclerosis complex (TSC) is a genetic disorder with high rates of comorbid ASDs5 that result from mutation of either TSC1 or TSC2, whose protein products dimerize and negatively regulate mammalian target of rapamycin (mTOR) signalling. TSC is an intriguing model to investigate the cerebellar contribution to the underlying pathogenesis of ASDs, as recent studies in TSC patients demonstrate cerebellar pathology6 and correlate cerebellar pathology with increased ASD symptomatology7, 8. Functional imaging also shows that TSC patients with ASDs display hypermetabolism in deep cerebellar structures, compared to TSC patients without ASDs9. However, the roles of Tsc1 and the sequelae of Tsc1 dysfunction in the cerebellum have not been investigated so far. Here we show that both heterozygous and homozygous loss of Tsc1 in mouse cerebellar PCs results in autistic-like behaviours, including abnormal social interaction, repetitive behaviour and vocalizations, in addition to decreased PC excitability. Treatment of mutant mice with the mTOR inhibitor, rapamycin, prevented the pathological and behavioural deficits. These findings demonstrate new roles for Tsc1 in PC function and define a molecular basis for a cerebellar contribution to cognitive disorders such as autism. - by Tsai PT et al.Nature 488, 647–651 (30 August 2012)

more...
No comment yet.