Mobile Genetic El...
Follow
Find
3.4K views | +0 today
 
Scooped by THE_inteins
onto Mobile Genetic Elements
Scoop.it!

Getting a GRIP: Adam Ewing discusses gene retrocopy insertion polymorphism

Getting a GRIP: Adam Ewing discusses gene retrocopy insertion polymorphism | Mobile Genetic Elements | Scoop.it

Transposable elements, nicknamed ‘jumping genes’, refer to stretches of DNA that are able to move from one part of the genome to another. Retrotransposons belong to this family of mobile genetic elements but also require the transcription of RNA to DNA in order to move or ‘transpose’. LINEs (long interspersed elements) are one of several subtypes of  retrotransposons. In addition to transposing themselves, they are able to mobilize sections of transcribed DNA that lack an associated LINE sequence. This results in retrocopied genes, which have proven to be important for the evolution of new genes. Adam Ewing and colleagues in the Haussler lab explore the diversity of these retrocopied genes, uncovering new insights into their frequency in the human genome and their occurrence in cancer. Their recent publication in Genome Biology explores gene retrocopy insertion polymorphisms (GRIPs).

 

 

more...
No comment yet.
Mobile Genetic Elements
Your new post is loading...
Your new post is loading...
Rescooped by THE_inteins from Genomic Parasites: Coevolution between host and parasites
Scoop.it!

Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements

Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons.

Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages.

The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate.


Via Gabriel Wallau
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Spy: a new group of eukaryotic DNA transposons without target site duplications

Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase, but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Biome | Mobile DNA: introns, neurons & stress

Biome | Mobile DNA: introns, neurons & stress | Mobile Genetic Elements | Scoop.it

Since the acceptance of mobile genetic elements as ubiquitous entities across the eukaryotic genome and their detection in prokaryotes, momentum has gathered around this field – as was evident at the 2014 Mobile Genetic Elements and Genome Evolution Keystone Symposium, organised by the Editors-in-Chief of Mobile DNA. In an Opinion article in Mobile DNA leading researchers attending the symposium present their thoughts on where mobile DNA research is going, including Marlene Belfort from the University at Albany, USA. Journal Development Editor for Mobile DNA Sam Rose (@Rosenovich) asked Belfort for her thoughts on the balance between eukaryotic and prokaryotic research in this field, as well as the most exciting recent developments.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase

R2 non-LTR retrotransposons insert at a specific site in the 28S rRNA genes of many animal phyla. R2 elements encode a single polypeptide with reverse transcriptase, endonuclease and nucleic acid binding domains. Integration involves separate cleavage of the two DNA strands at the target site and utilization of the released 3′ ends to prime DNA synthesis. Critical to this integration is the ability of the protein to specifically bind 3′ and 5′ regions of the R2 RNA. In this report, alanine mutations in two conserved motifs N-terminal to the reverse transcriptase domain were generated and shown to result in proteins that retained the ability to cleave the first strand of the DNA target, to reverse transcribe RNA from an annealed primer and to displace annealed RNA when using DNA as a template. However, the mutant proteins had greatly reduced ability to bind 3′ and 5′ RNA in mobility shift assays, use the DNA target to prime reverse transcription and conduct second-strand DNA cleavage. These motifs thus appear to participate in all activities of the R2 protein known to require specific RNA binding. The similarity of these R2 RNA binding motifs to those of telomerase and group II introns is discussed.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

RetrogeneDB—A Database of Animal Retrogenes

Retrocopies of protein-coding genes, reverse transcribed and inserted into the genome copies of mature RNA, have commonly been categorized as pseudogenes with no biological importance. However, recent studies showed that they play important role in the genomes evolution and shaping interspecies differences. Here, we present RetrogeneDB, a database of retrocopies in 62 animal genomes. RetrogeneDB contains information about retrocopies, their genomic localization, parental genes, ORF conservation, and expression. To our best knowledge, this is the most complete retrocopies database providing information for dozens of species previously never analyzed in the context of protein-coding genes retroposition. The database is available at http://retrogenedb.amu.edu.pl.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing

Retrotransposons constitute a major source of genetic variation, and somatic retrotransposon insertions have been reported in cancer. Here, we applied TranspoSeq, a computational framework that identifies retrotransposon insertions from sequencing data, to whole genomes from 200 tumor/normal pairs across 11 tumor types as part of The Cancer Genome Atlas (TCGA) Pan-Cancer Project. In addition to novel germline polymorphisms, we find 810 somatic retrotransposon insertions primarily in lung squamous, head and neck, colorectal, and endometrial carcinomas. Many somatic retrotransposon insertions occur in known cancer genes. We find that high somatic retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements

Reverse transcription-derived sequences account for at least half of the human genome. Although these retroelements are formidable motors of evolution, they can occasionally cause disease, and accordingly are inactivated during early embryogenesis through epigenetic mechanisms. In the mouse, at least for endogenous retroviruses, important mediators of this process are the tetrapod-specific KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor TRIM28. The present study demonstrates that KRAB/TRIM28-mediated regulation is responsible for controlling a very broad range of human-specific endogenous retroelements (EREs) in human embryonic stem (ES) cells and that it exerts, as a consequence, a marked effect on the transcriptional dynamics of these cells. It further reveals reciprocal dependence between TRIM28 recruitment at specific families of EREs and DNA methylation. It finally points to the importance of persistent TRIM28-mediated control of ERE transcriptional impact beyond their presumed inactivation by DNA methylation.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome

Transposition of mobile elements has been implicated in genome instability, rearrangements and therefore also adaptation to changing environmental conditions. Transposons could influence gene activity directly by transposition inside or close to coding regions by their disruption or by addition of regulative sequences. Further, class I transposable elements, which are the most abundant in plant genomes, utilize a RNA intermediate in their life cycle, therefore retrotransposons could act by producing non-coding RNAs that could affect other transcripts by RNA interference. Transposition activity is suppressed by chromatin modifications, and both classes of transposons have been shown to be activated in plants under various stress conditions and developmental stages. Using a nonspecific amplification approach, we demonstrate the differential transcriptional activation of sequences with homology to transposable elements and other associated sequences in the complex genome of Scots pine (Pinus sylvestris L.) after exposure to heat stress, infestation with pine woolly aphids, and salicylic acid and abscisic acid treatment. Sequences with homology to several retrotransposon classes and families were identified, as well as several chimeric transcript types. Some of them represent chloroplast sequence insertions into the pine nuclear genome and these sequences are highly represented in EST databases of a wide range of species. In this study, we identified several retrotransposon classes and families with differing levels of similarity with known transposable elements from other plant species, and which are differentially expressed under various stress conditions in Scots pine.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae

Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis

Transposable elements (TEs) and satellite DNAs (satDNAs) are abundant components of most eukaryotic genomes studied so far and their impact on evolution has been the focus of several studies. A number of studies linked TEs with satDNAs, but the nature of their evolutionary relationships remains unclear. During in silico analyses of the Drosophila virilis assembled genome we found a novel DNA transposon we named Tetris based on its modular structure and diversity of rearranged forms. We aimed to characterize Tetris and investigate its role in generating satDNAs. Data mining and sequence analysis showed that Tetris is apparently non-autonomous, with a structure similar to foldback elements, and present in D. virilis and D. americana. Herein, we show that Tetris share the final portions of its TIRs with DAIBAM, a previously described MITE implicated in the generation of chromosome inversions. Both elements are likely to be mobilized by the same autonomous TE. Tetris TIRs contain ~220 bp internal tandem repeats that we have named TIR-220. We also found TIR-220 repeats making up longer (kb-size) satDNA-like arrays. Using bioinformatic, phylogenetic and cytogenomic tools, we demonstrated that Tetris has contributed to shaping the genomes of D. virilis and D. americana, providing internal tandem repeats that served as building blocks for the amplification of satDNA arrays. The β-heterochromatic genomic environment seemed to have favored such amplification. Our results imply for the first time a role for foldback elements in generating satDNAs.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Rapid evolution of piRNA pathway in the teleost fish: implication for an adaption to transposon diversity

The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing and genome integrity. Transposable elements (TEs) can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This paper unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity

Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number of diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered.

We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity.

The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Genome-wide analysis of Alu editability

A-to-I RNA editing is apparently the most abundant post-transcriptional modification in primates. Virtually all editing sites reside within the repetitive Alu SINEs. Alu sequences are the dominant repeats in the human genome and thus are likely to pair with neighboring reversely oriented repeats and form double-stranded RNA structures that are bound by ADAR enzymes. Editing levels vary considerably between different adenosine sites within Alu repeats. Part of the variability has been explained by local sequence and structural motifs. Here, we focus on global characteristics that affect the editability at the Alu level. We use large RNA-seq data sets to analyze the editing levels in 203 798 Alu repeats residing within human genes. The most important factor affecting Alu editability is its distance to the closest reversely oriented neighbor—average editability decays exponentially with this distance, with a typical distance of ∼800 bp. This effect alone accounts for 28% of the total variance in editability. In addition, the number of Alu repeats of the same and reverse strand in the genomic vicinity, the expressed strand of the Alu, Alu’s length and subfamily and the occurrence of reversely oriented neighbor in the same intron\exon all contribute, to a lesser extent, to the Alu editability.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers

Hybridization is thought to play an important role in plant evolution by introducing novel genetic combinations and promoting genome restructuring. However, surprisingly little is known about the impact of hybridization on transposable element (TE) proliferation and the genomic response to TE activity. In this paper, we first review the mechanisms by which homoploid hybrid species may arise in nature. We then present hybrid sunflowers as a case study to examine transcriptional activity of long terminal repeat retrotransposons in the annual sunflowers Helianthus annuus, Helianthus petiolaris and their homoploid hybrid derivatives (H. paradoxus, H. anomalus and H. deserticola) using high-throughput transcriptome sequencing technologies (RNAseq). Sampling homoploid hybrid sunflower taxa revealed abundant variation in TE transcript accumulation. In addition, genetic diversity for several candidate genes hypothesized to regulate TE activity was characterized. Specifically, we highlight one candidate chromatin remodelling factor gene with a direct role in repressing TE activity in a hybrid species. This paper shows that TE amplification in hybrid lineages is more idiosyncratic than previously believed and provides a first step towards identifying the mechanisms responsible for regulating and repressing TE expansions.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Inteins as indicators of gene flow in the halobacteria

This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

The Dynamic Proliferation of CanSINEs Mirrors the Complex Evolution of Feliforms

Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Genomic Landscape of Human, Bat, and Ex Vivo DNA Transposon Integrations

The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>40 My) and currently inactive human elements, 2) younger (<40 My) bat elements, and 3) ex vivo integrations of piggyBat and Sleeping Beauty elements in HeLa cells. Although the distribution of ex vivo elements reflected integration preferences, the distribution of human and (to a lesser extent) bat elements was also affected by selection. We used regression techniques (linear, negative binomial, and logistic regression models with multiple predictors) applied to 20-kb and 1-Mb windows to investigate how the genomic landscape in the vicinity of DNA transposons contributes to their integration and fixation. Our models indicate that genomic landscape explains 16–79% of variability in DNA transposon genome-wide distribution. Importantly, we not only confirmed previously identified predictors (e.g., DNA conformation and recombination hotspots) but also identified several novel predictors (e.g., signatures of double-strand breaks and telomere hexamer). Ex vivo integrations showed a bias toward actively transcribed regions. Older DNA transposons were located in genomic regions scarce in most conserved elements—likely reflecting purifying selection. Our study highlights how DNA transposons are integral to the evolution of bat and human genomes, and has implications for the development of DNA transposon assays for gene therapy and mutagenesis applications.

more...
No comment yet.
Rescooped by THE_inteins from MycorWeb Plant-Microbe Interactions
Scoop.it!

Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TE-Driven Genome Evolution

Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TE-Driven Genome Evolution | Mobile Genetic Elements | Scoop.it

Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.


Via Francis Martin
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades

A large fraction of eukaryotic genomes is made up of long interspersed nuclear elements (LINEs). Due to their capability to create novel copies via error-prone reverse transcription, they generate multiple families and reach high copy numbers. Although mammalian LINEs are well-described, plant LINEs are only poorly investigated. Here, we present a systematic cross-species survey of LINEs in higher plant genomes shedding light on plant LINE evolution as well as diversity, and facilitating their annotation in genome projects.

Applying a Hidden Markov Model-based analysis, 59,390 intact LINE reverse transcriptases (RTs) have been extracted from 23 plant genomes. These fall in only two out of 28 LINE clades (L1 and RTE) known in eukaryotes. While plant RTE LINEs are highly homogenous and mostly constitute only a single family per genome, plant L1 LINEs are extremely diverse and form numerous families. Despite their heterogeneity, all members across the 23 species fall into only seven L1 subclades, some of them defined here. Exemplarily focusing on the L1 LINEs of a basal reference plant genome (Beta vulgaris), we show that the subclade classification level does not only reflect RT sequence similarity, but also mirrors structural aspects of complete LINE retrotransposons, like element size, position and type of encoded enzymatic domains. Our comprehensive catalogue of plant LINE RTs serves the classification of highly diverse plant LINEs, while the provided subclade-specific HMMs facilitate their annotation.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency

Endogenous retroelements (EREs) account for about half of the mouse or human genome, and their potential as insertional mutagens and transcriptional perturbators is suppressed by early embryonic epigenetic silencing. Here, we asked how ERE control is maintained during the generation of induced pluripotent stem cells (iPSCs), as this procedure involves profound epigenetic remodeling. We found that all EREs tested were markedly upregulated during the reprogramming of either mouse embryonic fibroblasts, human CD34+ cells or human primary hepatocytes. At the iPSC stage, EREs of some classes were repressed whereas others remained highly expressed, yielding a pattern somewhat reminiscent of that recorded in embryonic stem cells. However, variability persisted between individual iPSC clones in the control of specific ERE integrants. Both during reprogramming and in iPS cells, the upregulation of specific EREs significantly impacted on the transcription of nearby cellular genes. While transcription triggered by specific ERE integrants at highly precise developmental stages may be an essential step towards obtaining pluripotent cells, the broad and unspecific unleashing of the repetitive genome observed here may contribute to the inefficiency of the reprogramming process and to the phenotypic heterogeneity of iPSCs.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Virus-Like Attachment Sites and Plastic CpG Islands: Landmarks of Diversity in Plant Del Retrotransposons

Virus-Like Attachment Sites and Plastic CpG Islands: Landmarks of Diversity in Plant Del Retrotransposons | Mobile Genetic Elements | Scoop.it

Full-length Del elements from ten angiosperm genomes, 5 monocot and 5 dicot, were retrieved and putative attachment (att) sites were identified. In the 2432 Del elements, two types of U5 att sites and a single conserved type of U3 att site were identified. Retroviral att sites confer specificity to the integration process, different att sites types therefore implies lineage specificity. While some features are common to all Del elements, CpG island patterns within the LTRs were particular to lineage specific clusters. All eudicot copies grouped into one single clade while the monocots harbour a more diverse collection of elements. Furthermore, full-length Del elements and truncated copies were unevenly distributed amongst chromosomes. Elements of Del lineage are organized in plants into three clusters and each cluster is composed of elements with distinct LTR features. Our results suggest that the Del lineage efficiently amplified in the monocots and that one branch is probably a newly emerging sub-lineage. Finally, sequences in all groups are under purifying selection. These results show the LTR region is dynamic and important in the evolution of LTR-retrotransposons, we speculate that it is a trigger for retrotransposon diversification.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications

PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications | Mobile Genetic Elements | Scoop.it
Designer transcription-activator like effectors (TALEs) is a promising technology and made it possible to edit genomes with higher specificity. Such specific engineering and gene regulation technologies are also being developed using RNA-binding proteins like PUFs and PPRs. The main feature of TALEs, PUFs and PPRs is their repetitive DNA/RNA-binding domains which have single nucleotide binding specificity. Available kits today allow researchers to assemble these repetitive domains in any combination they desire when generating TALEs for gene targeting and editing. However, PCR amplifications of such repetitive DNAs are highly problematic as these mostly fail, generating undesired artifact products or deletions. Here we describe the molecular mechanisms leading to these artifacts. We tested our models also in plasmid templates containing one copy versus two copies of GFP-coding sequence arranged as either direct or inverted repeats. Some limited solutions in amplifying repetitive DNA regions are described.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals

Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus. Multiple alignments of the Chapaev transposons identified in these species revealed extremely high levels of nucleotide sequence identity (79-99%), which are inconsistent with vertical evolution given the deep divergence time separating these host species. Rather, the discontinuous distribution amongst species and lack of purifying selection acting on these transposons strongly suggest that they were independently and horizontally transferred into these species lineages. The detection of Chapaev transposons in an insect bracovirus indicated that these viruses might act as a possible vector for the horizontal spread of Chapaev transposons. One of the Chapaev family was also shared by lampreys and some of their common hosts (such as sturgeon and paddlefish), which suggested that parasite-host interaction might facilitate HTs.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Evolution of Centromeric Retrotransposons in Grasses

Centromeric Retrotransposons (CR) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages, but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates horizontal transfer, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant LTR retrotransposons represent the mosaic products of horizontal transfer and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis, but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

A MITE Transposon Insertion Is Associated with Differential Methylation at the Maize Flowering Time QTL Vgt1

One of the major quantitative trait loci for flowering time in maize, the Vegetative to generative transition 1 (Vgt1) locus, corresponds to an upstream (70 kb) noncoding regulatory element of ZmRap2.7, a repressor of flowering. At Vgt1, a miniature transposon (MITE) insertion into a conserved noncoding sequence was previously found to be highly associated with early flowering in independent studies. Because cytosine methylation is known to be associated with transposons and to influence gene expression, we aimed to investigate how DNA methylation patterns in wild-type and mutant Vgt1 correlate with ZmRap2.7 expression. The methylation state at Vgt1 was assayed in leaf samples of maize inbred and F1 hybrid samples, and at the syntenic region in sorghum. The Vgt1-linked conserved noncoding sequence was very scarcely methylated both in maize and sorghum. However, in the early maize Vgt1 allele, the region immediately flanking the highly methylated MITE insertion was significantly more methylated and showed features of methylation spreading. Allele-specific expression assays revealed that the presence of the MITE and its heavy methylation appear to be linked to altered ZmRap2.7 transcription. Although not providing proof of causative connection, our results associate transposon-linked differential methylation with allelic state and gene expression at a major flowering time quantitative trait locus in maize.

more...
No comment yet.