Mobile Genetic Elements
4.0K views | +0 today
Follow
Mobile Genetic Elements
Your new post is loading...
Your new post is loading...
Scooped by THE_inteins
Scoop.it!

Mobile element evolution playing jigsaw – SINEs in gastropod and bivalve mollusks

SINEs (Short INterspersed Elements) are widely distributed among eukaryotes. Some SINE families are organized in superfamilies characterized by a shared central domain. These central domains are conserved across species, classes and even phyla. Here we report the identification of two novel such superfamilies in the genomes of gastropod and bivalve mollusks. The central conserved domain of the first superfamily is present in SINEs in Caenogastropoda and Vetigastropoda as well as in all four subclasses of Bivalvia. We designated the domain MESC (Romanian for MElc – snail and SCoica – mussel) because it appears to be restricted to snails and mussels. The second superfamily is restricted to Caenogastropoda. Its central conserved domain – Snail – is related to the Nin-DC domain. Furthermore, we provide evidence that a 40bp sub-domain of the SINE V-domain is conserved in SINEs in mollusks and arthropods. It is predicted to form a stable stem-loop structure that is preserved in the context of the overall SINE RNA secondary structure in invertebrates. Our analysis also recovered short retrotransposons with a LINE-derived 5′ end. These share the body and/or tail with tRNA-derived SINEs within and across species. Finally, we identified CORE SINEs in gastropods and bivalves – extending the distribution range of this superfamily.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Post-translational environmental switch of RadA activity by extein–intein interactions in protein splicing

Post-translational environmental switch of RadA activity by extein–intein interactions in protein splicing | Mobile Genetic Elements | Scoop.it

Post-translational control based on an environmentally sensitive intervening intein sequence is described. Inteins are invasive genetic elements that self-splice at the protein level from the flanking host protein, the exteins. Here we show in Escherichia coli and in vitro that splicing of the RadA intein located in the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by the native exteins, which lock the intein in an inactive state. High temperature or solution conditions can unlock the intein for full activity, as can remote extein point mutations. Notably, this splicing trap occurs through interactions between distant residues in the native exteins and the intein, in three-dimensional space. The exteins might thereby serve as an environmental sensor, releasing the intein for full activity only at optimal growth conditions for the native organism, while sparing ATP consumption under conditions of cold-shock. This partnership between the intein and its exteins, which implies coevolution of the parasitic intein and its host protein may provide a novel means of post-translational control.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs

Bacterial genomes encode numerous homologs of Cas9, the effector protein of the type II CRISPR-Cas systems. The homology region includes the arginine-rich helix and the HNH nuclease domain that is inserted into the RuvC-like nuclease domain. These genes, however, are not linked to cas genes or CRISPR. Here we show that Cas9 homologs represent a distinct group of non-autonomous transposons which we denote ISC (Insertion Sequences Cas9-like). We identify many diverse families of full-length ISC transposons and demonstrate that their terminal sequences (particularly 3’ -termini) are similar to those of IS605 superfamily transposons that are mobilized by the Y1 tyrosine transposase encoded by the TnpA gene and often also encode the TnpB protein containing the RuvC-like endonuclease domain. The terminal regions of the ISC and IS605 transposons contain palindromic structures that are likely recognized by the Y1 transposase. The transposons from these two groups are inserted either exactly in the middle or upstream of specific 4-bp target sites, without target site duplication. We also identify autonomous ISC transposons that encode TnpA-like Y1 transposases. Thus, the non-autonomous ISC transposons could be mobilized in trans either by Y1 transposases of other, autonomous ISC transposons or by Y1 transposases of the more abundant IS605 transposons. These findings imply an evolutionary scenario in which the ISC transposons evolved from IS605 family transposons, possibly via insertion of a mobile Group II intron encoding the HNH domain, and Cas9 subsequently evolved via immobilization of an ISC transposon.

more...
No comment yet.
Rescooped by THE_inteins from Genomic Parasites: Coevolution between host and parasites
Scoop.it!

Mobile DNA - Transposable element detection from whole genome sequence data

The number of software tools available for detecting transposable element insertions from whole genome sequence data has been increasing steadily throughout the last ~5 years. Some of these methods have unique features suiting them for particular use cases, but in general they follow one or more of a common set of approaches. Here, detection and filtering approaches are reviewed in the light of transposable element biology and the current state of whole genome sequencing. We demonstrate that the current state-of-the-art methods still do not produce highly concordant results and provide resources to assist future development in transposable element detection methods.

Via Gabriel Wallau
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

p53 genes function to restrain mobile elements

Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling

L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling | Mobile Genetic Elements | Scoop.it

Detailed mechanistic understanding of L1 retrotransposition is sparse, particularly with respect to ORF1p, a coiled coil-mediated homotrimeric nucleic acid chaperone that can form tightly packed oligomers on nucleic acids. Although the coiled coil motif is highly conserved, it is uniquely susceptible to evolutionary change. Here we studied three ORF1 proteins: a modern human one (111p), its resuscitated primate ancestor (555p) and a mosaic modern protein (151p) wherein 9 of the 30 coiled coil substitutions retain their ancestral state. While 111p and 555p equally supported retrotransposition, 151p was inactive. Nonetheless, they were fully active in bulk assays of nucleic acid interactions including chaperone activity. However, single molecule assays showed that 151p trimers form stably bound oligomers on ssDNA at <1/10th the rate of the active proteins, revealing that oligomerization rate is a novel critical parameter of ORF1p activity in retrotransposition conserved for at least the last 25 Myr of primate evolution.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Diversification, Evolution and Methylation of Short Interspersed Nuclear Element families in sugar beet and related Amaranthaceae species

Diversification, Evolution and Methylation of Short Interspersed Nuclear Element families in sugar beet and related Amaranthaceae species | Mobile Genetic Elements | Scoop.it
Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analyzed 22 SINE families of seven genomes of the Amaranthaceae family and identified 34,806 SINEs, including 19,549 full length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nt up to 224 nt. SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared to their flanking regions, the strongest effect is visible for cytosines in the CHH context and indicates an involvement of asymmetric methylation in the silencing of SINEs.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus

Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus | Mobile Genetic Elements | Scoop.it

Repartition by super-families of the R. prolixus mobilome. Numbers indicate the percentage of the genome occupied by each super-family ->>

 

Abstract

The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species. We have taken advantage of the availability of the 700 Mbp complete genome sequence of R. prolixus to study the dynamics of invasion and persistence of transposable elements in this species.

Using both library-based and de novo methods of transposon detection, we found less than 6 % of transposable elements in the R. prolixus genome, a relatively low percentage compared to other insect genomes with a similar genome size. DNA transposons are surprisingly abundant and elements belonging to the mariner family are by far the most preponderant components of the mobile part of this genome with 11,015 mariner transposons that could be clustered in 89 groups (75 % of the mobilome). Our analysis allowed the detection of a new mariner clade in the R. prolixus genome, that we called nosferatis. We demonstrated that a large diversity of mariner elements invaded the genome and expanded successfully over time via three main processes. (i) several families experienced recent and massive expansion, for example an explosive burst of a single mariner family led to the generation of more than 8000 copies. These recent expansion events explain the unusual prevalence of mariner transposons in the R. prolixus genome. Other families expanded via older bursts of transposition demonstrating the long lasting permissibility of mariner transposons in the R. prolixus genome. (ii) Many non-autonomous families generated by internal deletions were also identified. Interestingly, two non autonomous families were generated by atypical recombinations (5' part replacement with 3' part). (iii) at least 10 cases of horizontal transfers were found, supporting the idea that host/vector relationships played a pivotal role in the transmission and subsequent persistence of transposable elements in this genome.

These data provide a new insight into the evolution of transposons in the genomes of hematophagous insects and bring additional evidences that lateral exchanges of mobile genetics elements occur frequently in the R. prolixus genome.

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

What is common between intein and a patient with AIDS in India? - Disseminated Emmonsia pasteuriana infection in India: a case report and a review

What is common between intein and a patient with AIDS in India? - Disseminated Emmonsia pasteuriana infection in India: a case report and a review | Mobile Genetic Elements | Scoop.it
We report here the first case of disseminated Emmonsia pasteuriana infection in a patient with AIDS in India. The patient presented with weight loss, dyspnoea, left-sided chest pain and multiple non-tender skin lesions over face and body for 3 months. Disseminated emmonsiosis was diagnosed on microscopic examination and fungal culture of skin biopsy and needle aspirate of lung consolidation. It was confirmed by sequencing internal transcribed spacer region of rDNA, beta tubulin, actin, and intein PRP8. The patient responded to amphotericin B and itraconazole therapy.
more...
No comment yet.
Rescooped by THE_inteins from Genomic Parasites: Coevolution between host and parasites
Scoop.it!

Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements

Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons.

Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages.

The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate.


Via Gabriel Wallau
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Spy: a new group of eukaryotic DNA transposons without target site duplications

Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase, but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Biome | Mobile DNA: introns, neurons & stress

Biome | Mobile DNA: introns, neurons & stress | Mobile Genetic Elements | Scoop.it

Since the acceptance of mobile genetic elements as ubiquitous entities across the eukaryotic genome and their detection in prokaryotes, momentum has gathered around this field – as was evident at the 2014 Mobile Genetic Elements and Genome Evolution Keystone Symposium, organised by the Editors-in-Chief of Mobile DNA. In an Opinion article in Mobile DNA leading researchers attending the symposium present their thoughts on where mobile DNA research is going, including Marlene Belfort from the University at Albany, USA. Journal Development Editor for Mobile DNA Sam Rose (@Rosenovich) asked Belfort for her thoughts on the balance between eukaryotic and prokaryotic research in this field, as well as the most exciting recent developments.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase

R2 non-LTR retrotransposons insert at a specific site in the 28S rRNA genes of many animal phyla. R2 elements encode a single polypeptide with reverse transcriptase, endonuclease and nucleic acid binding domains. Integration involves separate cleavage of the two DNA strands at the target site and utilization of the released 3′ ends to prime DNA synthesis. Critical to this integration is the ability of the protein to specifically bind 3′ and 5′ regions of the R2 RNA. In this report, alanine mutations in two conserved motifs N-terminal to the reverse transcriptase domain were generated and shown to result in proteins that retained the ability to cleave the first strand of the DNA target, to reverse transcribe RNA from an annealed primer and to displace annealed RNA when using DNA as a template. However, the mutant proteins had greatly reduced ability to bind 3′ and 5′ RNA in mobility shift assays, use the DNA target to prime reverse transcription and conduct second-strand DNA cleavage. These motifs thus appear to participate in all activities of the R2 protein known to require specific RNA binding. The similarity of these R2 RNA binding motifs to those of telomerase and group II introns is discussed.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors

Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors | Mobile Genetic Elements | Scoop.it

Movement of transposons causes insertions, deletions, and chromosomal rearrangements potentially leading to premature lethality in Drosophila melanogaster. To repress these elements and combat genomic instability, eukaryotes have evolved several small RNA-mediated defense mechanisms. Specifically, in Drosophila somatic cells, endogenous small interfering (esi)RNAs suppress retrotransposon mobility. EsiRNAs are produced by Dicer-2 processing of double-stranded RNA precursors, yet the origins of these precursors are unknown. We show that most transposon families are transcribed in both the sense (S) and antisense (AS) direction in Dmel-2 cells. LTR retrotransposons Dm297, mdg1, and blood, and non-LTR retrotransposons juan and jockey transcripts, are generated from intraelement transcription start sites with canonical RNA polymerase II promoters. We also determined that retrotransposon antisense transcripts are less polyadenylated than sense. RNA-seq and small RNA-seq revealed that Dicer-2 RNA interference (RNAi) depletion causes a decrease in the number of esiRNAs mapping to retrotransposons and an increase in expression of both S and AS retrotransposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and processed by Dicer-2 into esiRNAs that silence both sense and antisense retrotransposon transcripts. Reduction of sense retrotransposon transcripts potentially lowers element-specific protein levels to prevent transposition. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Stress out the LINEs

Occupying 17% of human genome, the mobile long interspersed element 1 (LINE-1 or L1) continues to modulate the landscape of our genome by inserting into new loci and, as a result, causing sporadic diseases. It is not surprising that human cells have evolved a battery of mechanisms to control and limit the activity of LINE-1. Our recent study unravels such a mechanism that is imposed by the stress granule pathway. This mechanism functions by sequestering the LINE-1 RNA-protein complex within the cytoplasmic stress granules and thus inhibiting the nuclear import of LINE-1 RNA and its subsequent reverse transcription and integration into cellular DNA. Conditions that promote stress granule formation, such as expression of the SAMHD1 protein, further reduce LINE-1 retrotransposition.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry

A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry | Mobile Genetic Elements | Scoop.it

Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve–miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNAiMet through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

The discovery of HTLV-1, the first pathogenic human retrovirus

After the discovery of retroviral reverse transcriptase in 1970, there was a flurry of activity, sparked by the “War on Cancer,” to identify human cancer retroviruses. After many false claims resulting from various artifacts, most scientists abandoned the search, but the Gallo laboratory carried on, developing both specific assays and new cell culture methods that enabled them to report, in the accompanying 1980 PNAS paper, identification and partial characterization of human T-cell leukemia virus (HTLV; now known as HTLV-1) produced by a T-cell line from a lymphoma patient. Follow-up studies, including collaboration with the group that first identified a cluster of adult T-cell leukemia (ATL) cases in Japan, provided conclusive evidence that HTLV was the cause of this disease. HTLV-1 is now known to infect at least 4–10 million people worldwide, about 5% of whom will develop ATL. Despite intensive research, knowledge of the viral etiology has not led to improvement in treatment or outcome of ATL. However, the technology for discovery of HTLV and acknowledgment of the existence of pathogenic human retroviruses laid the technical and intellectual foundation for the discovery of the cause of AIDS soon afterward. Without this advance, our ability to diagnose and treat HIV infection most likely would have been long delayed.
more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

VHICA, a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila

Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually-independent species, through so-called Horizontal Transposon Transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically-supported methods that can be applied to multiple species sequence datasets. Here, we developed a new automated method available as a R package “vhica” that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida

Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida | Mobile Genetic Elements | Scoop.it

 

Self-splicing introns are present in the mitochondria of members of most eukaryotic lineages. They are divided into Group I and Group II introns, according to their secondary structure and splicing mechanism. Being rare in animals, self-splicing introns were only described in a few sponges, cnidarians, placozoans and one annelid species. In sponges, three types of mitochondrial Group I introns were previously described in two demosponge families (Tetillidae, and Aplysinellidae) and in the homoscleromorph family Plakinidae. These three introns differ in their insertion site, secondary structure and in the sequence of the LAGLIDADG gene they encode. Notably, no group II introns have been previously described in sponges.
We report here the presence of mitochondrial introns in the cytochrome oxidase subunit 1 (COI) gene of three additional sponge species from three different families: Agelas oroides (Agelasidae, Agelasida), Cymbaxinella p verrucosa (Hymerhabdiidae, Agelasida) and Axinella polypoides (Axinellidae, Axinellida). We show, for the first time, that sponges can also harbour Group II introns in their COI gene, whose presence in animals’ mitochondria has so far been described in only two phyla, Placozoa and Annelida. Surprisingly, two different Group II introns were discovered in the COI gene of C. verrucosa. Phylogenetic analysis indicates that the Group II introns present in C. verrucosa are related to red algae (Rhodophyta) introns.
The differences found among intron secondary structures and the phylogenetic inferences support the hypothesis that the introns originated from independent horizontal gene transfer events. Our results thus suggest that self-splicing introns are more diverse in the mitochondrial genome of sponges than previously anticipated.

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

My paper: Intein clustering suggests functional importance in different domains of life

My paper: Intein clustering suggests functional importance in different domains of life | Mobile Genetic Elements | Scoop.it

Figure 1. Distribution of intein-containing proteins is sporadic.

A. Summary of intein mining. B. Schematic evolutionary tree for some bacterial and archaeal clades, and list of eukaryal clades.

 

Abstract

Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many non-orthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles, but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could potentially increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.

 

THE_inteins's insight:

This is my paper recently published in Molecular Biology and Evolution. The main message: Evolutionary history of inteins is very complex and we cannot exclude possibility of functional importance of inteins. Enjoy! :)

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression

Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a “genome shock” response factor to help neoautopolyploids adapt to genome-dosage effects.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Development of an intein-inspired amide cleavage chemical device - JOC (ACS Publications)

Here is one of the latest from intein engineering: A photo-responsive amide cleavage device was developed based on the asparagine imidation-mediated cleavage of peptide bonds during intein-mediated protein splicing. The chemical environment of the protein splicing process was mimicked by the incorporation of geminal dimethyl groups and a secondary amine unit in asparagine scaffold. Furthermore, the resulting photo-responsive device could induce the photo-triggered cleavage of an amide bond by the protection of the secondary amine unit with an o-nitrobenzyloxycarbonyl group

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers

Hybridization is thought to play an important role in plant evolution by introducing novel genetic combinations and promoting genome restructuring. However, surprisingly little is known about the impact of hybridization on transposable element (TE) proliferation and the genomic response to TE activity. In this paper, we first review the mechanisms by which homoploid hybrid species may arise in nature. We then present hybrid sunflowers as a case study to examine transcriptional activity of long terminal repeat retrotransposons in the annual sunflowers Helianthus annuus, Helianthus petiolaris and their homoploid hybrid derivatives (H. paradoxus, H. anomalus and H. deserticola) using high-throughput transcriptome sequencing technologies (RNAseq). Sampling homoploid hybrid sunflower taxa revealed abundant variation in TE transcript accumulation. In addition, genetic diversity for several candidate genes hypothesized to regulate TE activity was characterized. Specifically, we highlight one candidate chromatin remodelling factor gene with a direct role in repressing TE activity in a hybrid species. This paper shows that TE amplification in hybrid lineages is more idiosyncratic than previously believed and provides a first step towards identifying the mechanisms responsible for regulating and repressing TE expansions.

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

Inteins as indicators of gene flow in the halobacteria

This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.

 

 

more...
No comment yet.
Scooped by THE_inteins
Scoop.it!

The Dynamic Proliferation of CanSINEs Mirrors the Complex Evolution of Feliforms

Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed.

 

 

more...
No comment yet.