Mineralogy, Geoch...
Follow
Find
5.1K views | +0 today
 
Scooped by Ath Godelitsas
onto Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience
Scoop.it!

Synchrotron study of ceria nanoparticles invokes the picture of an electron sponge

Synchrotron study of ceria nanoparticles invokes the picture of an electron sponge | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

The authors monitored the Ce electronic structure during the synthesis and catalase mimetic reaction of colloidal ceria nanoparticles under in situ conditions. By means of high-energy resolution hard X-ray spectroscopy, they directly probed the Ce 4f and 5d orbitals. The study invokes the picture of an electron sponge.

more...
No comment yet.

From around the web

Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience
Your new post is loading...
Your new post is loading...
Scooped by Ath Godelitsas
Scoop.it!

Self-organized iron-oxide cementation geometry as an indicator of paleo-flows

Self-organized iron-oxide cementation geometry as an indicator of paleo-flows | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. The authors here show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids

Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it

Carbon is recycled via Earth's mantle at subduction zones. Laboratory experiments show that in the presence of water, carbon-rich liquids can form from the subducted crust at low temperatures, providing a supply of CO2 to surface volcanoes.

Ath Godelitsas's insight:

The author found that water strongly depresses the solidus for hydrous carbonate gabbro and limestone rocks, creating carbonatitic liquids that efficiently scavenge volatile elements, calcium and silicon, from the slab.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up

Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

This paper reviews carbon fluxes into and out of subduction zones, using compiled data, calculations of carbon solubility in aqueous fluids, and estimates of carbon flux in metasedimentary diapirs.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Computational support for a pyrolitic lower mantle containing ferric iron

Computational support for a pyrolitic lower mantle containing ferric iron | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

The dominant minerals in Earth’s lower mantle are thought to be Fe- and Al-bearing MgSiO3 bridgmanite and (Mg, Fe)O ferropericlase. Theoretical simulations, which depend on empirical evaluations of the effects of Fe incorporation into these minerals, support a pyrolitic lower mantle that contains a significant amount of ferropericlase, much like the Earth’s upper mantle. The authors here present first-principles computations combined with a lattice dynamics approach that include the effects of Fe2+ and Fe3+ incorporation.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it

Copper isotope range of the primitive (chondritic) meteorite groups. Inset: Box and whisker plot showing the range of Cu isotope compositions for the terrestrial samples used in constraining the BSE Cu isotope composition. Green box and dotted line represents the composition of BSE, light grey box and long dashes represent the composition of “chondritic bulk Earth” (CBE), dark grey box and short dashes represent the composition of “enstatite chondrite bulk Earth” (ECBE). Errors on the estimates are all 2 s.d.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Tracing the dynamic life story of a Bronze Age Female

Tracing the dynamic life story of a Bronze Age Female | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Excellent application of Isotope Geochemistry to Archaeology http://t.co/Ja6CSwtvXF http://t.co/BNlz72iEqD
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Caesium incorporation and retention in illite interlayers

Caesium incorporation and retention in illite interlayers | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs migrated into the illite interlayer becoming incorporated within the mineral structure. Results from extended X-ray absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was incorporated into the illite interlayer and revealed its bonding environment.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

In situ Imaging of Interfacial Precipitation of Phosphate on Goethite

In situ Imaging of Interfacial Precipitation of Phosphate on Goethite | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

In-situ Atomic Force Microscopy (AFM) has been used to probe the interaction of phosphate-bearing solutions with goethite, α-FeOOH, (010) cleavage surfaces.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Phase transformation and nanometric flow cause extreme weakening during fault slip

Phase transformation and nanometric flow cause extreme weakening during fault slip | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Faults weaken during earthquakes. Laboratory simulations of earthquake rupture show that the nanometric-scale fault gouge created during slip is inherently weak and flows by grain-boundary sliding, providing a mechanism to weaken faults.
Ath Godelitsas's insight:

High-speed friction experiments on a wide variety of rock types have shown that they all exhibit extreme weakening and that the sliding surface is nanometric and contains phases not present at the start.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Arsenate incorporation effects on the nucleation and growth of Fe(III) (hydr)oxides on quartz

Arsenate incorporation effects on the nucleation and growth of Fe(III) (hydr)oxides on quartz | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

Utilizing grazing incidence small-angle X-ray scattering (GISAXS) the authors studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate -and also phosphate- anions.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Soil and human security in the 21st century

Soil and human security in the 21st century | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

The vastness of the planet and its soil resources allowed agriculture to expand, with growing populations, or to move, when soil resources were depleted.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

European Mineralogical Union (EMU) Research Excellence Medal

European Mineralogical Union (EMU) Research Excellence Medal | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

The 2014 EMU Research Excellence Medal has been awarded to Encarnación Ruiz-Agudo, Department of Mineralogy and Petrology, University of Granada, Spain. She is awarded the EMU Medal for excellence in research in recognition for her important contributions to the field of mineral-water interactions and related phenomena. Her research finds a wide range applications from weathering processes and geochemical proxies to crystal growth processes and environmental remediation. The awarding of this medal also recognizes Dr. Ruiz-Agudo’s active involvement in mineralogical research at the European level with collaborations with scientists from numerous countries. Her stature in the international mineralogical community is underlined by her guest editorship of a recent issue of ELEMENTS (June 2013).

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation

Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Ath Godelitsas's insight:

Yje authors have created three-dimensional simulations of ridge–flank hydrothermal circulation, flowing between and through seamounts, to determine what controls hydrogeological sustainability, flow rate and preferred flow direction in these systems.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Geoscience Jobs : Earthworks : PhD opportunities in Radiogenic Isotope Geochemistry - Sydney, Australia - Macquarie University

PhD opportunities in Radiogenic Isotope Geochemistry - Sydney, Australia - http://t.co/ydk9Y8wEfz - #geochemistry #research #jobs
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Biogenic Mn-Oxides in Subseafloor Basalts

Biogenic Mn-Oxides in Subseafloor Basalts | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it

The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, the authors describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite.

Ath Godelitsas's insight:

Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. The authors suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides.

more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

TEMA: “Two tales of isotope geochemistry”

PRESENTACIÓN: Tema: “Two tales of isotope geochemistry” Expositor: Dr. Anthony Dosseto - University of Wollongong Australia Fecha: 10 de junio 2015 ...
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Mineralogy on Mars

A lecture on the mineralogy of Mars, using the latest data from the Mars rovers and orbiters. Fairly technical.
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Making Organic Molecules in Hydrothermal Vents in the Absence of Life

Making Organic Molecules in Hydrothermal Vents  in the Absence of Life | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
In 2009, scientists from Woods Hole Oceanographic Institution embarked on a NASA-funded mission to the Mid-Cayman Rise in the Caribbean, in search of a type of deep-sea hot-spring or hydrothermal vent that they believed held clues to the search for life on other planets. They were looking for a site with a venting process that produces a lot of hydrogen because of the potential it holds for the chemical, or abiotic, creation of organic molecules like methane – possible precursors to the prebiotic compounds from which life on Earth emerged.
For more than a decade, the scientific community has postulated that in such an environment, methane and other organic compounds could be spontaneously produced by chemical reactions between hydrogen from the vent fluid and carbon dioxide (CO2). The theory made perfect sense, but showing that it happened in nature was challenging.
Now we know why: an analysis of the vent fluid chemistry proves that for some organic compounds, it doesn’t happen that way.
New research by geochemists at Woods Hole Oceanographic Institution, published June 8 in the Proceedings of the National Academy of Sciences, is the first to show that methane formation does not occur during the relatively quick fluid circulation process, despite extraordinarily high hydrogen contents in the waters. While the methane in the Von Damm vent system they studied was produced through chemical reactions (abiotically), it was produced on geologic time scales deep beneath the seafloor and independent of the venting process. Their research further reveals that another organic abiotic compound is formed during the vent circulation process at adjacent lower temperature, higher pH vents, but reaction rates are too slow to completely reduce the carbon all the way to methane.
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

The Mineralogical Society of Great Britain and Ireland - Geomicrobiology Network

The Mineralogical Society of Great Britain and Ireland - Geomicrobiology Network | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
RT @MinSoc_UK: Register now for the Environmental Mineralogy and Geomicrobiology meeting on June 24th http://t.co/oWeAeSCcHP http://t.co/iL…
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

CNME

This is "CNME" by Plataforma de Divulgación on Vimeo, the home for high quality videos and the people who love them.
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Probing iron chemistry in the deep mantle | Carnegie Institution for Science

Probing iron chemistry in the deep mantle | Carnegie Institution for Science | Mineralogy, Geochemistry, Mineral Surfaces & Nanogeoscience | Scoop.it
Washington, D.C.— Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. Carbonates are important constituents of marine sediments and are heavily involved in the planet’s deep carbon cycle, primarily due to oceanic crust sinking into the mantle, a process called subduction. During subduction, carbonates interact with other minerals, which alter their chemical compositions.
more...
No comment yet.
Scooped by Ath Godelitsas
Scoop.it!

Geochemical Transactions | Abstract | Biomineralisation by earthworms – an investigation into the stability and distribution of amorphous calcium carbonate

Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC.
more...
No comment yet.