jasmonate
398 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Xin He from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

Plant Cell (review): Intervention of Phytohormone Pathways by Pathogen Effectors

Plant Cell (review): Intervention of Phytohormone Pathways by Pathogen Effectors | jasmonate | Scoop.it

"The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. "


Via Mary Williams
more...
No comment yet.
Rescooped by Xin He from fundoshi TOPICS: Plant biology, cell biology, and more
Scoop.it!

Nature Communications : Jasmonic acid regulates spikelet development in rice

Nature Communications : Jasmonic acid regulates spikelet development in rice | jasmonate | Scoop.it

ABSTRACT: The spikelet is the basal unit of inflorescence in grasses, and its formation is crucial for reproductive success and cereal yield. Here, we report a previously unknown role of the plant hormone jasmonic acid (JA) in determining rice (Oryza sativa) spikelet morphogenesis. The extra glume 1 (eg1) and eg2 mutants exhibit altered spikelet morphology with changed floral organ identity and number, as well as defective floral meristem determinacy. We show that EG1 is a plastid-targeted lipase that participates in JA biosynthesis, and EG2/OsJAZ1 is a JA signalling repressor that interacts with a putative JA receptor, OsCOI1b, to trigger OsJAZ1’s degradation during spikelet development. OsJAZ1 also interacts with OsMYC2, a transcription factor in the JA signalling pathway, and represses OsMYC2’s role in activating OsMADS1, an E-class gene crucial to the spikelet development. This work discovers a key regulatory mechanism of grass spikelet development and suggests that the role of JA in reproduction has diversified during the flowering plant evolution.


Via fundoshi
more...
fundoshi's curator insight, April 3, 2014 2:07 AM

これってそんな新規なのかな。ビジュアルがすごい(おしべアップ汚いのもある意味すごい)

Rescooped by Xin He from TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis
Scoop.it!

TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis

TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis | jasmonate | Scoop.it

Plants are confronted with predictable daily biotic and abiotic stresses that result from the day-night cycle. The circadian clock provides an anticipation mechanism to respond to these daily stress signals to increase fitness. Jasmonate (JA) is a phytohormone that mediates various growth and stress responses. Here, we found that the circadian-clock component TIME FOR COFFEE (TIC) acts as a negative factor in the JA-signaling pathway. We showed that the tic mutant is hypersensitive to growth-repressive effects of JA and displays altered JA-regulated gene expression. TIC was found to interact with MYC2, a key transcription factor of JA signaling. From this, we discovered that the circadian clock rhythmically regulates JA signaling. TIC is a key determinant in this circadian-gated process, and as a result, the tic mutant is defective in rhythmic JA responses topathogen infection. TIC acts here by inhibiting MYC2 protein accumulation and by controlling the transcriptional repression of CORONATINE INSENSITIVE1 in an evening-phase-specific manner. Taken together, we propose that TIC acts as an output component of the circadian oscillator to influence JA signaling directly.


Via Suayib Üstün, Mahesh Mahajan
more...
No comment yet.
Rescooped by Xin He from Plant immunity and legume symbiosis
Scoop.it!

Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis

Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis | jasmonate | Scoop.it

Plants have evolved sophisticated mechanisms for integration of endogenous and exogenous signals to adapt to the changing environment. Both the phytohormones jasmonate (JA) and ethylene (ET) regulate plant growth, development, and defense. In addition to synergistic regulation of root hair development and resistance to necrotrophic fungi, JA and ET act antagonistically to regulate gene expression, apical hook curvature, and plant defense against insect attack. However, the molecular mechanism for such antagonism between JA and ET signaling remains unclear. Here, we demonstrate that interaction between the JA-activated transcription factor MYC2 and the ET-stabilized transcription factor ETHYLENE-INSENSITIVE3 (EIN3) modulates JA and ET signaling antagonism in Arabidopsis thaliana. MYC2 interacts with EIN3 to attenuate the transcriptional activity of EIN3 and repress ET-enhanced apical hook curvature. Conversely, EIN3 interacts with and represses MYC2 to inhibit JA-induced expression of wound-responsive genes and herbivory-inducible genes and to attenuate JA-regulated plant defense against generalist herbivores. Coordinated regulation of plant responses in both antagonistic and synergistic manners would help plants adapt to fluctuating environments.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Xin He from MycorWeb Plant-Microbe Interactions
Scoop.it!

Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling

Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling | jasmonate | Scoop.it

The plant hormone jasmonate (JA) plays an important role in regulating growth, development and immunity. A key step in JA signaling is ligand-dependent assembly of a coreceptor complex consisting of the F-box protein COI1 and JAZ transcriptional repressors. Assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which at resting state bind to and repress the MYC transcription factors. Although the JA receptor complex is believed to function within the nucleus, how this receptor complex enters the nucleus and, more generally, the cell biology of jasmonate signaling are not well understood. In this study, we conducted mutational analysis of the C termini (containing the conserved Jas motif) of two JAZ repressors, JAZ1 and JAZ9. These analyses unexpectedly revealed different subcellular localization patterns of JAZ1ΔJas and JAZ9ΔJas, which were associated with differential interaction of JAZ1ΔJas and JAZ9ΔJas with MYC2 and differential repressor activity in vivo. Importantly, physical interaction with MYC2 appears to play an active role in the nuclear targeting of JAZ1 and JAZ9, and the nuclear localization of JAZ9 was compromised in myc2 mutant plants. We identified a highly conserved arginine residue in the Jas motif that is critical for coupling MYC2 interaction with nuclear localization of JAZ9 and JAZ9 repressor function in vivo. Our results suggest a model for explaining why some JAZΔJas proteins, but not others, confer constitutive JA-insensitivity when overexpressed in plants. Results also provide evidence for a transcription factor-dependent mechanism for nuclear import of a cognate transcriptional repressor JAZ9 in plants.


Via Francis Martin
more...
No comment yet.
Rescooped by Xin He from Plant microbe interactions
Scoop.it!

Arabidopsis DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy (The plant cell 2014)

Arabidopsis DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy (The plant cell 2014) | jasmonate | Scoop.it

Integration of diverse environmental and endogenous signals to coordinately regulate growth, development, and defense is essential for plants to survive in their natural habitat. The hormonal signals gibberellin (GA) and jasmonate (JA) antagonistically and synergistically regulate diverse aspects of plant growth, development, and defense. GA and JA synergistically induce initiation of trichomes, which assist seed dispersal and act as barriers to protect plants against insect attack, pathogen infection, excessive water loss, and UV irradiation. However, the molecular mechanism underlying such synergism between GA and JA signaling remains unclear. In this study, we revealed a mechanism for GA and JA signaling synergy and identified a signaling complex of the GA pathway in regulation of trichome initiation. Molecular, biochemical, and genetic evidence showed that the WD-repeat/bHLH/MYB complex acts as a direct target of DELLAs in the GA pathway and that both DELLAs and JAZs interacted with the WD-repeat/bHLH/MYB complex to mediate synergism between GA and JA signaling in regulating trichome development. GA and JA induce degradation of DELLAs and JASMONATE ZIM-domain proteins to coordinately activate the WD-repeat/bHLH/MYB complex and synergistically and mutually dependently induce trichome initiation. This study provides deep insights into the molecular mechanisms for integration of different hormonal signals to synergistically regulate plant development.


Via Olivier ANDRE
more...
No comment yet.
Rescooped by Xin He from Plants and Microbes
Scoop.it!

PLOS One: Mutational Analysis of the Ve1 Immune Receptor That Mediates Verticillium Resistance in Tomato (2014)

PLOS One: Mutational Analysis of the Ve1 Immune Receptor That Mediates Verticillium Resistance in Tomato (2014) | jasmonate | Scoop.it

Pathogenic Verticillium species are economically important plant pathogens that cause vascular wilt diseases in hundreds of plant species. The Ve1 gene of tomato confers resistance against race 1 strains of Verticillium dahliae and V. albo-atrum. Ve1 encodes an extracellular leucine-rich repeat (eLRR) receptor-like protein (RLP) that serves as a cell surface receptor for recognition of the recently identified secreted Verticillium effector Ave1. To investigate recognition of Ave1 by Ve1, alanine scanning was performed on the solvent exposed β-strand/β-turn residues across the eLRR domain of Ve1. In addition, alanine scanning was also employed to functionally characterize motifs that putatively mediate protein-protein interactions and endocytosis in the transmembrane domain and the cytoplasmic tail of the Ve1 protein. Functionality of the mutant proteins was assessed by screening for the occurrence of a hypersensitive response upon co-expression with Ave1 upon Agrobacterium tumefaciens-mediated transient expression (agroinfiltration). In order to confirm the agroinfiltration results, constructs encoding Ve1 mutants were transformed into Arabidopsis and the transgenes were challenged with race 1 Verticillium. Our analyses identified several regions of the Ve1 protein that are required for functionality.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Xin He from PlantBioInnovation
Scoop.it!

Gibberellin Acts Positively Then Negatively to Control Onset of Flower Formation in Arabidopsis


Via Biswapriya Biswavas Misra
more...
Biswapriya Biswavas Misra's curator insight, May 8, 2014 6:21 PM

The switch to reproductive development is biphasic in many plants, a feature important for optimal pollination and yield. We show that dual opposite roles of the phytohormone gibberellin underpin this phenomenon in Arabidopsis. Although gibberellin promotes termination of vegetative development, it inhibits flower formation. To overcome this effect, the transcription factor LEAFY induces expression of a gibberellin catabolism gene; consequently, increased LEAFY activity causes reduced gibberellin levels. This allows accumulation of gibberellin-sensitive DELLA proteins. The DELLA proteins are recruited by SQUAMOSA PROMOTER BINDING PROTEIN–LIKE transcription factors to regulatory regions of the floral commitment gene APETALA1 and promote APETALA1 up-regulation and floral fate synergistically with LEAFY. The two opposing functions of gibberellin may facilitate evolutionary and environmental modulation of plant inflorescence architecture.

Rescooped by Xin He from Plant immunity and legume symbiosis
Scoop.it!

Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates

Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates | jasmonate | Scoop.it

Three pathogenic forms, or formae speciales, of Fusarium oxysporum infect the roots of Arabidopsis thaliana belowground, instigating symptoms of wilt disease in leaves aboveground. In prior reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibit more or less wilt disease than wild type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene have no less infection than wild type, though they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis is infecting roots. Insensitivity to jasmonates suppresses infection by F. oxysporum forma specialis conglutinans and F. oxysporum forma specialis matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu) in culture filtrates; whereas, insensitivity to jasmonates has no effect on infection by F. oxysporum forma specialis raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum forma specialis lycopersici produces no detectable jasmonates. Thus, some but not all F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or development of symptoms in shoots. Only when infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis.

 

 


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Xin He from Plant roots and rhizosphere
Scoop.it!

Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis

Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis | jasmonate | Scoop.it

The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA) and ET antagonistically regulate apical hook development, although the underlying molecular mechanism is largely unknown. Here, we report that JA represses hook formation by reducing HLS1 expression. Our results further reveal that the JA-activated transcription factor MYC2 represses EIN3 function to reduce HLS1 expression through at least the following two layers of regulation: (1) MYC2 binds to the promoter of an F-box gene, EIN3 BINDING F-BOX PROTEIN1, to induce its expression and thus promote EIN3 degradation; and (2) MYC2 physically interacts with EIN3 and inhibits its DNA binding activity. Collectively, our findings shed light on the molecular mechanism underlying the antagonism between JA and ET during apical hook development and provide insight into the coaction of multiple phytohormones in the regulation of plant growth and development.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Xin He from Plants and Microbes
Scoop.it!

PLOS Pathogens: Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors (2013)

PLOS Pathogens: Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors (2013) | jasmonate | Scoop.it

Gram-negative bacterial pathogens deliver a variety of virulence proteins through the type III secretion system (T3SS) directly into the host cytoplasm. These type III secreted effectors (T3SEs) play an essential role in bacterial infection, mainly by targeting host immunity. However, the molecular basis of their functionalities remains largely enigmatic. Here, we show that the Pseudomonas syringae T3SE HopZ1a, a member of the widely distributed YopJ effector family, directly interacts with jasmonate ZIM-domain (JAZ) proteins through the conserved Jas domain in plant hosts. JAZs are transcription repressors of jasmonate (JA)-responsive genes and major components of the jasmonate receptor complex. Upon interaction, JAZs can be acetylated by HopZ1a through a putative acetyltransferase activity. Importantly,P. syringae producing the wild-type, but not a catalytic mutant of HopZ1a, promotes the degradation of HopZ1-interacting JAZs and activates JA signaling during bacterial infection. Furthermore, HopZ1a could partially rescue the virulence defect of a P. syringae mutant that lacks the production of coronatine, a JA-mimicking phytotoxin produced by a few P. syringaestrains. These results highlight a novel example by which a bacterial effector directly manipulates the core regulators of phytohormone signaling to facilitate infection. The targeting of JAZ repressors by both coronatine toxin and HopZ1 effector suggests that the JA receptor complex is potentially a major hub of host targets for bacterial pathogens.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Xin He from Plant immunity and legume symbiosis
Scoop.it!

RuBPCase activase (RCA) mediates growth–defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in N...

RuBPCase activase (RCA) mediates growth–defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in N... | jasmonate | Scoop.it
SummaryRuBPCase activase (RCA), an abundant photosynthetic protein, is strongly down-regulated in response to Manduca sexta's oral secretion (OS) in Nicotiana attenuata. RCA-silenced plants are impaired not only in photosynthetic capacity and growth, but also in jasmonic acid-isoleucine (JA-Ile) signaling, and herbivore resistance mediated by JA-Ile-dependent defense traits. These responses are consistent with a resource-based growth–defense trade-off.As JA + Ile supplementation of OS restored wild-type (WT) levels of JA-Ile, defenses and resistance to M. sexta, but OS supplemented individually with JA or Ile did not, the JA-Ile deficiency of RCA-silenced plants could not be attributed to lower JA or Ile pools or JAR4/6 conjugating activity. Similar levels of JA-Ile derivatives after OS elicitation indicated unaltered JA-Ile turnover, and lower levels of other JA conjugates ruled out competition from other conjugation reactions. RCA-silenced plants accumulated more methyl jasmonate (MeJA) after OS elicitation, which corresponded to increased jasmonate methyltransferase (JMT) activity.RCA silencing phenocopies JMT overexpression, wherein elevated JMT activity redirects OS-elicited JA flux towards inactive MeJA, creating a JA sink which depletes JA-Ile and its associated defense responses.Hence, RCA plays an additional non-photosynthetic role in attenuating JA-mediated defenses and their associated costs, potentially allowing plants to anticipate resource-based constraints on growth before they actually occur.

Via Christophe Jacquet
more...
No comment yet.