Intelligence
1.2K views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Jean-Michel Livowsky from Influence et contagion
Scoop.it!

The six types of Twitter conversations | #patterns #archetypes

The six types of Twitter conversations | #patterns #archetypes | Intelligence | Scoop.it
Have you ever wondered what a Twitter conversation looks like from 10,000 feet?

Via Pierre Levy, luiy
more...
luiy's curator insight, March 25, 2014 2:20 PM

Have you ever wondered what a Twitter conversation looks like from 10,000 feet? A new report from the Pew Research Center, in association with the Social Media Research Foundation, provides an aerial view of the social media network. By analyzing many thousands of Twitter conversations, we identified six different conversational archetypes. Our infographic describes each type of conversation network and an explanation of how it is shaped by the topic being discussed and the people driving the conversation.

Kamian's curator insight, March 26, 2014 11:57 PM

Me encantan estas clasificaciones, ayudan a comprender y diferenciar rapidamente las diferentes dinámicas sociales y arquitecturas que se van conformando en las redes sociales.

Rescooped by Jean-Michel Livowsky from Influence et contagion
Scoop.it!

Competition among #memes in a world with limited attention | #SNA #ABM #prediction

Competition among #memes in a world with limited attention | #SNA #ABM #prediction | Intelligence | Scoop.it
The wide adoption of social media has increased the competition among ideas for our finite attention. We employ a parsimonious agent-based model to study whether such a competition may affect the popularity of different memes, the diversity of information we are exposed to, and the fading of our collective interests for specific topics. Agents share messages on a social network but can only pay attention to a portion of the information they receive. In the emerging dynamics of information diffusion, a few memes go viral while most do not. The predictions of our model are consistent with empirical data from Twitter, a popular microblogging platform. Surprisingly, we can explain the massive heterogeneity in the popularity and persistence of memes as deriving from a combination of the competition for our limited attention and the structure of the social network, without the need to assume different intrinsic values among ideas.

Via luiy
more...
luiy's curator insight, February 22, 2014 8:06 AM

Here we outline a number of empirical findings that motivate both our question and the main assumptions behind our model. We then describe the proposed agent-based toy model of meme diffusion and compare its predictions with the empirical data. Finally we show that the social network structure and our finite attention are both key ingredients of the diffusion model, as their removal leads to results inconsistent with the empirical data.

 

-----------------------------

Limited attention


We first explore the competition among memes. In particular, we test the hypothesis that the attention of a user is somewhat independent from the overall diversity of information discussed in a given period. Let us quantify the breadth of attention of a user through Shannon entropy S = −Σi f(i) log f(i) where f(i) is the proportion of tweets generated by the user about meme i. Given a user who has posted n messages, her entropy can be as small as 0, if all of her posts are about the same meme; or as large as log n if she has posted a message about each of n different memes. We can measure the diversity of the information available in the system analogously, defining f(i) as the proportion of tweets about meme i across all users. Note that these entropy-based measures are subject to the limits of our operational definition of a meme; finer or coarser definitions would yield different values.

 

John Caswell's curator insight, March 2, 2014 8:23 AM

Very intetesting! Attention spans!