Chasing the Future
Follow
Find tag "disease"
2.3K views | +1 today
Chasing the Future
information related to new technologies & innovation, developments in science and space exploration
Curated by Sílvia Dias
Your new post is loading...
Your new post is loading...
Rescooped by Sílvia Dias from Longevity science
Scoop.it!

RNA Interference: Nanocoatings on bandages could deliver RNAs to shut off disease-related genes

RNA Interference: Nanocoatings on bandages could deliver RNAs to shut off disease-related genes | Chasing the Future | Scoop.it

Medical researchers think specially tailored RNA sequences could turn off genes in patients’ cells to encourage wound healing or to kill tumor cells. Now researchers have developed a nanocoating for bandages that could deliver these fragile gene-silencing RNAs right where they’re needed (ACS Nano 2013, DOI:10.1021/nn401011n). The team hopes to produce a bandage that shuts down genes standing in the way of healing in chronic wounds.

 

Small interfering RNAs, or siRNAs, derail expression of specific genes in cells by binding to other RNA molecules that contain the code for those genes. Biologists have developed siRNAs that target disease-related genes. But for these siRNAs to reach the clinic, researchers must find a way to deliver the molecules safely to the right cells. Unfortunately, free oligonucleotides like siRNAs don’t fare well inside the body or cells as enzymes and acids quickly chop them up, says Paula T. Hammond, a chemical engineer at Massachusetts Institute of Technology.

 

Other groups have tackled this delivery challenge by attaching siRNAs to chemical carriers that protect the oligonucleotides as they travel through the bloodstream. The pharmaceutical company Sanofi-Aventis asked Hammond to design a vehicle that would work at the site of a wound or tumor, releasing the siRNAs over a long period of time. The company hoped that putting the biomolecules right where they’re needed, without them having to survive a trip through the bloodstream, would increase the efficacy of the treatment.

 

Hammond and her colleagues produced an siRNA-containing nanocoating that could be applied to a wide range of medical materials, such as bandages or biodegradable polymers doctors could implant during surgery to prevent an excised tumor from coming back. As the coating slowly dissolves, it releases siRNA molecules tethered to protective nanoparticles.

 

The thin films consist of two different materials: a peptide called protamine sulfate and calcium phosphate nanoparticles decorated with the therapeutic siRNAs. Other researchers have shown that similar nanoparticles help the nucleotides evade destruction once they’re taken up by cells (J. Controlled Release 2010, DOI: 10.1016/j.jconrel.2009.11.008).

 

The team alternately dips whatever they want to coat in water solutions of the two materials. The RNA and nanoparticles are negatively charged, and the peptides are positively charged. The two substances cling together due to electrostatic force, producing a film when the water dries.

 

To test their delivery method, the researchers coated woven nylon bandages with 80-nm-thick films and applied the bandages to layers of human and animal cells in culture. In one experiment, a bandage loaded with 19 µg of siRNA per square centimeter released two-thirds of its load over 10 days. Other bandages made using siRNAs targeting the gene for fluorescent green protein almost completely shut down the protein’s production in cells expressing the gene. Hammond says the group is now testing bandages that knock down MMP9, a collagen-destroying protein associated with slow healing in chronic wounds.


Via Dr. Stefan Gruenwald, Ray and Terry's
more...
No comment yet.
Rescooped by Sílvia Dias from Longevity science
Scoop.it!

Rapid point-of-care testing for multiple diseases from a drop of blood | KurzweilAI

Rapid point-of-care testing for multiple diseases from a drop of blood | KurzweilAI | Chasing the Future | Scoop.it

A diagnostic system using DNA powder and gold nanoparticles being developed by scientists at the University of Toronto’s Institute of Biomaterials and Biomedical Engineering could provide rapid point-of-care diagnosis of the world’s leading infectious diseases in the near future.

 

BBME PhD student Kyryl Zagorovsky has developed a rapid diagnostic biosensor that will allow technicians to test for multiple diseases at the same time with one small sample, and with high accuracy and sensitivity. The biosensor relies upon gold nanoparticles, which change color.

 

 


Via Ray and Terry's
more...
Kevin Moran's curator insight, March 5, 2013 10:00 AM

Technology Continues To Empower Patients When It Come To Early Detection & Treatment!