Green Energy Tech...
Follow
Find
1.8K views | +0 today
 
Scooped by Duane Tilden
onto Green Energy Technologies & Development
Scoop.it!

Regulatory change and the smart grid | Intelligent Utility

Regulatory change and the smart grid | Intelligent Utility | Green Energy Technologies & Development | Scoop.it
Phil Carson, columnist for Intelligent Utility Daily, interviews a David O'Brien from Bridge Energy Group on regulatory changes to support grid modernization.
Duane Tilden's insight:

The knottiest issue is how to balance risk between ratepayers and shareholders when you look at smart grid investments. [...] We're not going to let ratepayers bear this risk. 

 

It's a conundrum for the industry as a whole. Traditional rate-making methodology is a cost-plus exercise in which the utility gets its investment back plus a rate of return set by regulators. It was established many decades ago and premised on investment in largely stable, known commodities (poles & wires as compared to digital switches and advanced IT).[...]

 

IU: Which stakeholders could or should drive these sorts of changes? 

 

O'Brien: That is the question, the heart of the matter. [...] I've given this some thought and the best I can come up is that industry—the smart grid industry—could probably do more, along with the investor-owned utilities, to find some way to be more constructively engaged with the regulatory community. 

 

 

more...
No comment yet.
Green Energy Technologies & Development
The latest news & developments in clean and sustainable energy technologies.
Curated by Duane Tilden
Your new post is loading...
Your new post is loading...
Scooped by Duane Tilden
Scoop.it!

Solar Energy and Battery Storage Coupled Provide Demand Response & Utility Peak Shaving

Solar Energy and Battery Storage Coupled Provide Demand Response & Utility Peak Shaving | Green Energy Technologies & Development | Scoop.it
Borrego Solar, a developer, and Stem, an energy storage firm, discuss when PV, storage or both will benefit commercial customers the most.
Duane Tilden's insight:

>" [...] Thanks to advancements in technology, there are more energy solutions available to consumers. As a result, the confusion about which option to choose -- solar, storage or solar-plus-storage -- is growing.

Utility energy costs

To understand the benefits of energy storage and solar at a customer facility, it’s essential to first understand the elements of most organizations’ utility energy costs: energy charges and demand charges. This is the bread and butter for energy managers, but many leaders in finance and/or operations aren’t as aware of the energy cost mix -- despite it being one of their largest budgetary line items. It should be noted that this billing structure isn’t in place in every market. 

Energy charges, the price paid for the amount of energy used over the course of the billing cycle, are how most people think of paying for electricity. A price is paid for every kilowatt-hour used. Demand charges are additional charges incurred by most commercial customers and are determined by the highest amount of energy, in kilowatts, used at any instant or over some designated timeframe -- typically a 15-minute interval -- in that billing cycle.

Demand charges are a bit more complex. They come from a need for the grid infrastructure to be large enough to accommodate the highest amount of energy, or demand, needed at any moment in order to avoid a blackout. Every region is different, but demand charges typically make up somewhere between 20 percent and 40 percent of an electricity bill for commercial customers.

Why storage?

Intelligent storage can help organizations specifically tackle their demand charges. By combining predictive software and battery-based storage, these systems know when to deploy energy during usage peaks and offset those costly demand charges. Most storage systems run completely independently from solar, so they can be added to a building whether or not solar is present.

Storage can reduce demand charges by dispensing power during brief periods of high demand, which in essence shaves down the peaks, or spikes, in energy usage. Deploying storage is economical under current market conditions for load profiles that have brief spikes in demand, because a relatively small battery can eliminate the short-lived peaks.

For peak demand periods of longer duration, a larger, and considerably more expensive, battery would be needed, and with the higher material costs, the economics may not be cost-effective. As system costs continue to decline, however, a broader range of load profiles will be able to save with energy storage.  

Why solar?

For the commercial, industrial or institutional energy user, solar’s value proposition is pretty simple. For most facilities in states with high energy costs and a net metering regime in place, onsite solar can reduce energy charges and provide a hedge against rising electricity costs. The savings come primarily from producing/buying energy from the solar system, which reduces the amount of energy purchased from the utility, and -- when the installation produces more than is used -- the credit from selling the excess energy to the grid at retail rates.

The demand savings are a relatively small part of the benefit of solar because the timing of solar production and peak demand need to line up in order to cut down demand charges. Solar production is greatest from 9 a.m. to 3 p.m., but the peak period (when demand for energy across the grid is highest) is typically from 12 p.m. to 6 p.m. If demand-charge rates are determined by the highest peak incurred, customers with solar will still fall into higher demand classes from their energy usage later in the day, when solar has less of an impact.

That being said, solar can reduce a significant portion of demand charges if the customer is located within a utility area where solar grants access to new, solar-friendly rate schedules. These rate schedules typically reduce demand charges and increase energy charges, so the portion of the utility bill that solar can impact is larger.  [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Virtual Power Plants Aggregate Renewable Energy Battery Storage Systems

Virtual Power Plants Aggregate Renewable Energy Battery Storage Systems | Green Energy Technologies & Development | Scoop.it
Aggregating connected energy storage systems to create ‘virtual power plants’ is likely to become a big part of the next phase of storage, according to the executive director of the US-based Energy Storage Association.
Duane Tilden's insight:

>" [...] 

Part of the beauty is that this kind of storage-based ‘multi-tasking’ could be secondary to the main aims of the storage being installed, such as integrating solar.

“You don’t have to do it every day, but on an infrequent basis you can jump into the marketplace to help make money and subsidise all your projects. And, you can do big things for the grid. You will look like a power plant as far as the grid can tell. You can replace the need for a new peaking plant or something like that. [There are] a lot of great things you can do with distributed storage; the sum of [its] parts is greater than the individual pieces.”

Companies are already trialling the concept in various configurations around the world, analyst Omar Saadeh, senior grid analyst at GTM Research, told PV Tech Storage recently. Saadeh said VPPs are one way utilities could use storage to meet “a higher demand for rapidly deployable grid flexibility”.

One example Saadeh cited was a project called PowerShift Atalantic in Canada, which was “designed to manage and mitigate intermittent power from large-scale wind generation, currently totalling 822MW”.

“Through the multiple flexible curtailment service providers, aggregated loads have the ability to balance wind intermittency by responding to virtual power plant dispatch signals in near-real time, providing the equivalent of a 10-minute spinning reserve ancillary service typically executed by pollution-heavy peaker plants,” Saadeh said.

“Since March 2014, the project included 1,270 customer-connected devices with 18 MW of load flexibility, approximately 90% residential.”

Saadeh said Europe has been especially active on the concept, calling France one of the “leading supporters” of such developments.

“They’ve looked at many promising applications including partial islanding, or microgrids, DER-oriented marketplace development, and renewable balancing services.”

German utility Lichtblick, which claims to generate its power 100% from renewables, is another entity which has already got started on VPPs, which it calls a “swarm” of devices. Its battery system providers in VPP programmes include Tesla Energy and Germany’s Sonnenbatterie. Meanwhile another big Tesla partner, SolarCity, also intends to aggregate storage using the EV maker turned energy industry disruptor’s Powerwall for homes. [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Oil Well Waste Water Used to Generate Geothermal Power

Oil Well Waste Water Used to Generate Geothermal Power | Green Energy Technologies & Development | Scoop.it

The team took off-the-shelf geothermal generators and hooked them to pipes carrying boiling waste water. They’re set to flip the switch any day. When they do, large pumps will drive the steaming water through the generators housed in 40-foot (12-meter) containers, producing electricity that could either be used on site or hooked up to power lines and sold to the electricity grid.

Duane Tilden's insight:

>"Oil fracking companies seeking to improve their image and pull in a little extra cash are turning their waste water into clean geothermal power.

For every barrel of oil produced from a well, there’s another seven of water, much of it boiling hot. Instead of letting it go to waste, some companies are planning to harness that heat to make electricity they can sell to the grid.

Companies such as Continental Resources Inc. and Hungary’s MOL Group are getting ready to test systems that pump scalding-hot water through equipment that uses the heat to turn electricity-generating turbines before forcing it back underground to coax out more crude.

 

Though the technology has yet to be applied broadly, early results are promising. And if widely adopted, the environmental and financial benefits could be significant. Drillers in the U.S. process 25 billion gallons (95 billion liters) of water annually, enough to generate as much electricity as three coal-fired plants running around the clock -- without carbon emissions.

“We can have distributed power throughout the oil patch,” said Will Gosnold, a researcher at the University of North Dakota who’s leading Continental Resources’ project well.

Geothermal power also holds out the promise of boosting frackers’ green credentials after years of criticism for being the industry’s worst polluters, says Lorne Stockman, research director at Oil Change International, an environmental organization that promotes non-fossil fuel energy.

“This is one way to make it look like the industry cares about the carbon issue,” he said. Even if steam generates less carbon than other oil field power sources, “if you’re in the business of oil and gas, you’re not part of the solution.”

Cheap Oil

Then there’s the money. With crude at less than $50 a barrel, every little bit can help lower costs. At projects like the one being tested by Continental Resources in North Dakota, a 250 kilowatt geothermal generator has the potential to contribute an extra $100,000 annually per well, according to estimates from the U.S. Energy Department.

That’s not big money and the $3.4 million cost to test the technology is still too much to apply to each of Continental’s hundreds of wells. Yet if the company can lower the costs of the technology, it will not only generate electricity it will also extend the economic life of wells, making them more profitable, said Greg Rowe, a production manager with Continental Resources. [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

A New Era for Geothermal Energy in Alberta?

A New Era for Geothermal Energy in Alberta? | Green Energy Technologies & Development | Scoop.it
Standard thinking for decades has been that geothermal technology is too costly and inefficient to be a significant source of energy. But a growing number of experts say the time may be right for geothermal to assume a higher profile, especially in 'perfectly situated' Alberta.
Duane Tilden's insight:

>" [...] The economics of renewable energy projects are improving as governments begin to introduce carbon taxes and other fees on large carbon-emitting facilities, such as coal power plants.

Geothermal power plants turn hot water into electricity. Companies drill underground for water or steam similar to the process of drilling for oil. The heat is brought to the surface and used to spin turbines. The water is then returned underground.

"I think Alberta is perfectly situated to make the technology work," said Todd Hirsch, chief economist with ATB Financial. "All the geothermal energy experts say it is all wrong for Alberta. You have to go down so deep to get any heat. Well actually, we have experience drilling through four miles [6.4 km] worth of rock to get at other things that are valuable."

Hirsch describes geothermal as "a perfectly green, perfectly renewable source of electricity." He also suggests geothermal could be a boon for the province, where companies have had a knack for developing "marginal resources" such as the oilsands.

"I think geothermal energy might be one that Alberta wants to champion specifically because it doesn't work here," said Hirsch. "If we can make it work here in Alberta, then it is a cinch to sell the technology to the Chinese and the Germans and everyone elsewhere geothermal doesn't work." [...]

What are the costs?

Geothermal power plants cost more money than natural gas facilities. For some perspective, consider the Neal Hot Springs plant in Oregon that was constructed in 2012 for $139 million for 22 megawatts of production.

The Shepard natural gas power plant in Calgary began operating this year with a total cost of $1.4 billion for 800 megawatts of electricity. In this comparison, the geothermal facility costs three times as much per megawatt of power.

Enbridge, a part-owner of the Neal Hot Springs plant, has said the plant saves about 159,000 tonnes per year of carbon dioxide emissions compared to a similar-sized natural gas facility, and about more than 340,000 tonnes per year compared to a coal power plant.

Coal facilities supply nearly 40 per cent of electricity in Alberta.

While the NDP government has yet to announce a specific policy, the party ran on a campaign platform in the recent election pledging to phase out coal.

Premier Rachel Notley has announced an increase to the province's carbon pricing rules and is expected to announce significant climate change policies this year. Such changes improve the economics of renewable energy projects, such as geothermal.

"It requires a long-term vision to develop," said Dunn. "How much do we want to invest in the future?" "<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Water Vortex Hydro-Electric Power Plant Designs

Water Vortex Hydro-Electric Power Plant Designs | Green Energy Technologies & Development | Scoop.it

In a fairly radical departure from the principles that normally govern hydroelectric power generation, Austrian engineer Franz Zotlöterer has constructed a low-head power plant that makes use of the kinetic energy inherent in an artificially induced vortex. The water's vortex energy is collected by a slow moving, large-surface water wheel, making the power station transparent to fish - there are no large pressure differences built up, as happens in normal turbines.

Duane Tilden's insight:

>" [...] The aspect of the power plant reminds a bit of an upside-down snail - through a large, straight inlet the water enters tangentially into a round basin, forming a powerful vortex, which finds its outlet at the center bottom of the shallow basin. The turbine does not work on pressure differential but on the dynamic force of the vortex. Not only does this power plant produce a useful output of electricity, it also aerates the water in a gentle way. Indeed, the inventor was looking for an efficient way to aerate the water of a small stream as he hit upon this smart idea of a plant that not only gives air to the medium but also takes from it some of the kinetic energy that is always inherent in a stream.

[...] Zotlöterer's results are quite respectable. The cost of construction for his plant was half that of a conventional hydroelectric installation of similar yield and the environmental impact is positive, instead of negative.

 The diameter of the vortex basin is 5 meters.

The head - difference between the two water levels - is 1,6 meters.

The turbine produced 50.000 kWh in its first year of operation.

Construction cost was 57.000 Euro [...] "<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Company Developing Thermo-Electric Materials for Waste-Heat Energy Recovery

Company Developing Thermo-Electric Materials for Waste-Heat Energy Recovery | Green Energy Technologies & Development | Scoop.it
NASA's Jet Propulsion Laboratory, Pasadena, California, has licensed patents on high-temperature thermoelectric materials to Evident Technologies, Troy, New York, which provides these kinds of materials and related power systems.
Duane Tilden's insight:

>" [...] Thermoelectric materials convert heat into electricity. For example, by using this technology, waste-heat from a car could potentially be fed back into the vehicle and used to generate electricity. This would increase efficiency and deliver low-cost solutions for harvesting waste heat.

"The licensed technology could be applied to convert heat into electricity in a number of waste heat recovery applications, including automobile exhaust and high-temperature industrial processes such as ceramic and glass processing plants," said Thierry Caillat, task leader for the thermoelectrics team at JPL.

JPL has a long history of high-temperature thermoelectric development driven by the need for space mission power in the absence of sunlight. Many space probes that leave Earth's orbit use thermoelectrics as their electrical power source.  [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

California Resort Hotel First to Upgrade to Energy Storage + EV Charging

California Resort Hotel First to Upgrade to Energy Storage + EV Charging | Green Energy Technologies & Development | Scoop.it
Shore Hotel in Santa Monica, California, is a luxury establishment with an energy storage system and fast DC electric vehicle (EV) charging -- reportedly, the first one in the US to have this setup. It is expected that the lithium-ion energy storage system will help it reduce electricity demand charges by 50%. Over time, that savings
Duane Tilden's insight:

>" [...] 

So what is the connection between energy storage and EV charging? When an EV is plugged into a charger, electricity demand increases, so the hotel could be on the hook for a high rate for the electricity, depending on the time of day. Demand charges are based on the highest rate for 15 minutes in a billing cycle. So, obviously, a business would want to avoid spikes in electricity usage so it would not have to pay that rate.

That’s where the energy storage comes in. When there is a spike, electricity can be used from the energy storage system, instead of from a utility’s electricity. Avoiding demand charges in this way, as noted above, can thus help businesses save money. [...]"<

 

 

 

 
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Closed Loop Cooling Saves Millions of Gallons of Water in Texas Combined Cycle Natural Gas Power Plant

Closed Loop Cooling Saves Millions of Gallons of Water in Texas Combined Cycle Natural Gas Power Plant | Green Energy Technologies & Development | Scoop.it
When a heat wave rolls in, most people crank up their AC units and turn on their sprinklers to cool off. But when the heat decides to settle in, just like it did repeatedly in Texas over the last several summers, the combination of a high demand for electricity and dwindling water supply can start a vicious circle. That’s because power plants use water for cooling equipment and a lack …
Duane Tilden's insight:

>" [...] Instead of water, each of the two plants will use two powerful air-cooled “Harriet” gas turbines and one air-cooled steam turbine developed by GE. “The technology uses the same cooling principle as the radiator in your car,” Harris says. “You blow in the air and it cools the medium flowing in closed loops around the turbines.”

The power plants, which are expected to open next year, will be using a so-called combined cycle design (see image below) and produce power in two steps. First, the two gas turbines (in the center with exhaust stacks) extract energy from burning natural gas and use it to spin electricity generators. But they also produce waste heat. 

The system sends the waste heat to a boiler filled with water, which produces steam that drives a steam turbine to extract more energy and generate more power (blue and gray building center left).

But that’s easier said than done. The steam inside the steamturbine moves in a closed loop and needs to be cooled down back to water so it could be heated up again in the boiler. “Normally, we cool this steam with water, which evaporates and cools down in huge mechanical cooling towers,” says GE engineer Thomas Dreisbach. “A lot of the cooling water escapes in those huge white clouds you sometimes see rising from towers next to power plants.” The Exelon design is using a row of powerful fans and air condensers (rear right) to do the trick and save water.

Similar to the steam turbines, GE’s Harriet gas turbines also use air to chill a closed loop filled with the coolant glycol and reduce the temperature inside the turbine. The combined efficiency of the plant will approach 61 percent, which in the power-generation industry is like running a sub 4-minute mile. [...]"<

 

 

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Smart Grid Testbed For Industrial Electrical Grid Innovation

Smart Grid Testbed For Industrial Electrical Grid Innovation | Green Energy Technologies & Development | Scoop.it
Industrial Internet Consortium announces first energy-focused testbed.
Duane Tilden's insight:

The Communication and Control Testbed for Microgrid Applications, the first energy-focused testbed, was today [Mar 27/2015] announced by the Industrial Internet Consortium.

Member organisations including Real-Time Innovations (RTI), National Instruments, and Cisco, will collaborate on the project, working with power utility firms CPS Energy and Southern California Edison. Additionally, Duke Energy and power industry organisation Smart Grid Interoperability Panel (SGIP) will be also involved.

In order to put an end to renewable energy waste in neighbourhoods or businesses, a new architectural innovation was found to be needed.

Today's power grid relies on a central-station architecture, which is not designed to interconnect distributed and renewable power sources such as roof-top solar and wind turbines. The system must over-generate power to compensate for rapid variation in power generation or demands.

The Communication and Control Testbed will introduce the flexibility of real-time analytics and control to increase efficiencies, ensuring that power is generated more accurately and reliably to match demand.

The solution proposes re-architecting electric power grids to include a series of distributed microgrids which will control smaller areas of demand with distributed generation and storage capacity.

These microgrids will operate independently from the main electric power grid, but will still interact and be coordinated with the existing infrastructure.

In order to ensure a coordinated, accepted architecture based on modern, cross-industry industrial internet technologies, companies taking part in the venture will work with Duke Energy and SGIP.

The Communications and Control framework will be developed in three phases, with initial developments being tested in Southern California Edison's Controls Lab in Westminster, CA.

The final stage of the project will culminate in a field deployment that will take place at CPS Energy's "Grid-of-the-Future" microgrid test area in San Antonio, Texas.

Stan Schneider, RTI's CEO and IIC Steering Committee member, said: "The smart grid is a critical infrastructure component of the Industrial Internet of Things.

"The IIoT will span industries, sensor to cloud, power to factory, and road to hospital. This key first step will address a significant barrier to the efficient use of green energy." [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

European Pioneers Energy Efficient Glass Recycling Solution

European Pioneers Energy Efficient Glass Recycling Solution | Green Energy Technologies & Development | Scoop.it

With ever increasing recycling targets to meet, manufacturers of glass bottles and jars need to make sure that they can feed their furnaces with the highest quality of cullet (recycled glass) and maximise the energy and carbon saving benefits that this offers.

Duane Tilden's insight:

>"[...] When it is delivered to the glass plant, cullet is typically stored in outdoor bunkers, where it is subject to variations in the climate, particularly during winter months. If it has accumulated significant levels of water, snow and ice, it will require higher temperatures, and thus more energy, to remelt it in the furnace.

The task facing the operations team at Ardagh’s Nienburg plant in Germany was to find a simple and environmentally effective solution. The obvious approach is to pre-heat the “frozen” cullet prior to feeding it into the furnace. But because a traditional preconditioning process can use a lot of energy, an alternative approach of capturing heat already  generated elsewhere in the plant was sought.

Investigations showed that the most likely source of waste heat was around the furnaces. The challenge would be to find the best way of recovering and transporting this hot air to the cullet. It was met by drawing hot air at 80°C across the furnace, blowing it into a specially developed heat exchanger charged with energy to raise the temperature to 120°C and piping it to the bunkers. 

This approach has proved the most energy efficient means of defrosting, drying and preheating the cullet. Annual energy savings of 116,000 Euros have been achieved at Nienburg, together with an annual  CO2  reduction of 334 tonnes. 

Johan Gorter, Ardagh Group CEO, Glass, Europe, commented: “This is one of many planned actions we are taking throughout our European plants as we strive to meet the very highest sustainability performance standards. “ [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

US Energy Storage Capacity to Triple in 2015

US Energy Storage Capacity to Triple in 2015 | Green Energy Technologies & Development | Scoop.it
Over triple the amount of energy storage capacity -- 220 megawatts worth -- is expected to come on-line this year.
Duane Tilden's insight:

>" [...] 2015 looks set to be a milestone year for advanced energy storage solutions. Some 220 megawatts worth of energy storage capacity will be deployed across the nation in 2015 – more than three times the 2014 total, according to an inaugural market research report from GTM Research and the Energy Storage Association (ESA). The organizations see growth continuing “at a rapid clip thereafter.”

The number of grid-connected electrochemical and electromechanical storage installations that came on-line in 2014 totaled 61.9 megawatts of power capacity, the organizations found, up 40 percent from 44.2 MW in 2013. One leading distributed energy storage pioneer delivered over a third of the total.  [...]

Utility deployments dominated the fast emerging U.S. market for advanced energy storage systems in 2014, accounting for 90 percent of newly-installed capacity. So-called “behind the meter” installations at utility customer sites – commercial and industrial companies, government facilities, schools, hospitals and municipalities – made up 10 percent of the 2014 total.

But installations of “behind the meter” energy storage systems picked up sharply in the fourth quarter of 2014, GTM and ESA note. Going forward, GTM expects behind-the-meter installations will account for 45 percent of the overall market by 2019.

Advanced energy storage system deployments are also concentrated in states that have and/or are in the process of instituting market regulatory reforms and supportive policies, including mandates and incentive programs. GTM and ESA singled out California and states where PJM is responsible for grid operations and management – all or part of 13 states across the eastern U.S. and the District of Columbia – as early leaders.

“The U.S. energy storage market is nascent, but we expect it to pick up more speed this year,” GTM Research SVP Shayle Kann was quoted in a Greentech Media news report. “Attractive economics already exist across a broad array of applications, and system costs are in rapid decline. We expect some fits and starts but significant overall growth for the market in 2015.”

 [...]"<
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Are Virtual Power Plants the Next Generation in Electrical Utilities?

Are Virtual Power Plants the Next Generation in Electrical Utilities? | Green Energy Technologies & Development | Scoop.it
Germany's energy giants are lumbering behind the rapid advance of renewable energy. They might stay afloat for a while, but they don't seem flexible enough to achieve a turnaround, says DW's Henrik Böhme.
Duane Tilden's insight:

>"

Decentralization is the buzzword. And the power required elsewhere, say, for street lights, electric motors, or the bakery nearby will be largely generated through renewables. Even large industrial compounds will be in a position to generate enough electricity for their own needs.

Nuclear power stations will all have been switched off by then, with only a few coal-fired or gas-fired plants still in operation. One way or another, Germany's power landscape is bound to undergo dramatic changes.

That's been obvious for a couple of years now. But the German utilities' age-old business models don't seem to be working anymore. All they know is big and heavy - they're used to nuclear and coal power stations guaranteeing billions in profit, year-in year-out, and they seemed to secure their earnings without any trouble. And then they grew fat and began making mistakes.  [...]

Then came the Fukushima nuclear disaster four years ago, leading to the German government's decision to phase out nuclear energy completely by 2022. That dealt a severe blow to Eon, RWE and co. which hadn't really understood the thrust of the country's energy transition anyway.

The utilities in question are now frantically trying to rescue what they still can. They're cutting away some of the fat. Costs are being cut, employees are being laid off and selected divisions are being jettisoned. The companies have rediscovered private clients by offering them networking technology.

But people don't trust those giant, de facto monopolist firms anymore. Younger companies can do the same just as well, and often far more efficiently. Take "Next Kraftwerke", a Cologne-based start-up. They run a virtual power station where power is collected from many smaller facilities and redistributed in the process. This is pretty close to what a future energy supply system will look like.

According to Silicon Valley researcher Peter Diamandis, 40 percent of the world's current biggest companies will have ceased to play an important role some 10 years from now. On current performance, among those to fall will most likely be Eon, RWE and others."<

  
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Brewery's Waste Treatment Bio-Gas Power Micro-Turbines for Grid Power

Brewery's Waste Treatment Bio-Gas Power Micro-Turbines for Grid Power | Green Energy Technologies & Development | Scoop.it
Sierra Nevada taps waste-to-energy technologies as a way to close operational loops and demonstrate responsible brewing practices.
Duane Tilden's insight:

>"[...] 

Biogas benefits

Sierra Nevada operates breweries in Chico, California, and in Mills River, North Carolina. While the Chico facility has been in operation since 1980, the Mills River brewery didn’t break ground until 2012. Both facilities operate anaerobic digesters for treating brewery effluent water. Each facility uses the biogas produced from the digesters a little bit differently. In Chico, the biogas is used to offset natural gas production for use in its boilers. The Mills River digester is also used in the boilers but is also being fed into two 200-kilowatt microturbines from Capstone of Chatsworth, California, which will generate electricity to power the operation.

McKay says the first anaerobic digester was installed in Chico in 2002, well before the technology had gained traction in the United States. The digester, manufactured by Veolia Water Technologies subsidiary Biothane, Pennsauken, New Jersey, is an upflow anaerobic sludge bed. The biogas produced from the digestion process is cleaned and treated by a biogas skid designed by Fuel Cell Energy, Danbury, Connecticut, before it is used in the boilers. When the digester was initially installed, Sierra Nevada had planned on using the biogas in its fuel cells, but the inconsistent flow of biogas from the digester was problematic for the fuel cells without a buffer zone.

“We just decided we would send the biogas all to the boilers because the boilers could definitely use it,” says McKay.

The fuel cells were installed in Chico in 2005 and are considered “old technology” by today’s standards, according to McKay. The company is currently deciding on a replacement for the fuel cells which is planned to be completed by the end of the year. Fuel cells, microturbines and other engine technologies have all been considered as potential replacements.

“Ideally we would like to produce electricity from any biogas we are producing at the wastewater treatment plant,” McKay says, adding, “It is fine to use in the boiler, but we would prefer to make electricity because it would be closing the loop a little bit better.” [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Japan Installs World's Largest Offshore Wind Turbine at Fukushima

Japan Installs World's Largest Offshore Wind Turbine at Fukushima | Green Energy Technologies & Development | Scoop.it
offshore wind turbine was anchored by the Fukushima Offshore Wind Consortium and is located approximately 12 miles off the cost of Fukushima, a region of Ja
Duane Tilden's insight:
>" The turbine has been built to withstand 65-foot waves.

The 344-foot 7 MW (megawatt) Offshore Hydraulic Drive Turbine features a rotor diameter of 538 feet and three giant blades, each stretching 262 feet in length. The structure is fastened to the seabed by four 20-ton anchors, and loose chains connect the turbine to the seabed, fortifying it against large waves.

One of the chief engineers of the turbine, Katsunobu Shimizu, told NBC News that “These turbines and anchors are designed to withstand 65-foot waves.” He also explained that “here we can get 32-foot-tall tsunamis. That’s why the chains are deliberately slackened.”

The consortium purposely designed the structures to be able to withstand the fierce and unforgiving weather native to Japan’s waters. In fact, this problematic weather even caused issues during the construction of the turbine. Installations had to be reportedly put on hold on four separate occasions because of typhoons.

The offshore wind turbine is one of three planed for the area.

The Fukushima Offshore Wind Consortium is led by Marubeni Corporation and also involves nine other firms, such as Mitsubishi Heavy Industries, which was the company that supplied the turbine. The $401 million project is funded by Japan’s Ministry of Economy, and was created for the purpose of developing and testing the wind technology for additional commercialization, and to bring new industry to the Fukushima region of Japan that was devastated by the earthquake in 2011.

The 7 MW offshore wind turbine is one of three turbines planned for the facility. When the final turbine is installed later this year, the three turbines are expected to generate a combined total of 14 MW. [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Armored Trucks get Natural Gas & Electric Plug-in Hybrid Conversion to Reduce Emissions by 99.9% & Big Fuel Economy

Armored Trucks get  Natural Gas & Electric Plug-in Hybrid Conversion to Reduce Emissions by 99.9% & Big Fuel Economy | Green Energy Technologies & Development | Scoop.it
Efficient Drivetrains and American Repower are partnering to convert a fleet of six armored vans to run on compressed natural gas with a plug-in hybrid.
Duane Tilden's insight:

>"When hauling around massive amounts of money and valuables around Southern California, security is generally a much bigger concern than fuel economy. However, the need for vehicles to become more efficient is hitting every segment, even armored vans. That's why Efficient Drivetrains Inc. and North American Repower are teaming up to convert six of these 26,000-pound behemoths run on natural gaswith a plug-in hybrid offering additional help. The first one should be hauling riches for Sectran Security around Los Angeles in 2016.

All three companies are already positioning the upcoming conversion as a win-win solution to current issues. The armored vehicles can still do their job of hauling money around the LA area but with a claimed 99.9 percent reduction in emissions from the current diesel engines. Generally, the vans make frequent stops while at work but must stay running for security reasons. This can potentially run afoul of California's rule not to let diesels idle more than five minutes. With this upcoming version, drivers will be able to go electrically between stops and then will use the natural gas when cruising.

This work combines the strengths of both firms working on these vehicles. North American Repower already specializes in natural gas engine management and conversions, and Efficient Drivetrains is very familiar with the world of plug-ins. The funding for the project includes a $3-million grant from the California Energy Commission, plus the same amount in private funds."< 

[...]

>"Press Release:  

North American Repower and Efficient Drivetrains, Inc. to Deliver First PHEV-RNG Armored Truck
Collaboration reduces emissions by 99.9 percent

OCEANSIDE, Calif. & MILPITAS, Calif.--(BUSINESS WIRE)--Two global leaders in developing and manufacturing advanced transportation vehicles have teamed up to manufacture a first-of-its-kind fleet of Class-5 armored vehicles that combine the benefits of Renewable Natural Gas (RNG) and zero emission Plug-In Hybrid Electric Vehicle (PHEV) technology.

"We're excited to be partnering with EDI on this breakthrough innovation"

North American Repower—California's leading natural gas engine management and conversion technology company— and Efficient Drivetrains, Inc.—a global leader in developing high-efficiency Plug-in Hybrid Electric Vehicle solution—will convert a fleet of six 26,000 pound, Class-5 medium-duty armored vehicles operated by Sectran Security into PHEV vehicles that run on electricity and renewable natural gas—known as "Zero Emission with Range Extension" vehicles. The collaboration supports the dramatic acceleration in California toward a zero emissions environment. Today, the Sectran Security trucks make frequent stops as part of their highly congested urban routes. At each stop, the engines are kept idling for security purposes, but now risk violating California's strict diesel idling regulations, which prohibit idling the engine for more than five minutes. With the modernized trucks, Sectran can completely eliminate engine idling by operating in all-electric mode during stop-and-go operations on urban routes and in hybrid-mode during highway operations. When complete, the vehicles possess impressive performance statistics—the demonstration trucks will enable Sectran to reduce annual diesel consumption by 31,000+ gallons, significantly reduce annual fuel costs, and reduce emissions by 99.9 percent. [...]"<
more...
Stephane Bilodeau's curator insight, July 31, 8:59 PM

"When hauling around massive amounts of money and valuables around Southern California, security is generally a much bigger concern than fuel economy. However, the need for vehicles to become more efficient is hitting every segment, even armored vans. That's why Efficient Drivetrains Inc. and North American Repower are teaming up to convert six of these 26,000-pound behemoths run on natural gaswith a plug-in hybrid offering additional help. The first one should be hauling riches for Sectran Security around Los Angeles in 2016.

All three companies are already positioning the upcoming conversion as a win-win solution to current issues. The armored vehicles can still do their job of hauling money around the LA area but with a claimed 99.9 percent reduction in emissions from the current diesel engines. Generally, the vans make frequent stops while at work but must stay running for security reasons. This can potentially run afoul of California's rule not to let diesels idle more than five minutes. With this upcoming version, drivers will be able to go electrically between stops and then will use the natural gas when cruising.

This work combines the strengths of both firms working on these vehicles. North American Repower already specializes in natural gas engine management and conversions, and Efficient Drivetrains is very familiar with the world of plug-ins. The funding for the project includes a $3-million grant from the California Energy Commission, plus the same amount in private funds."< 

[...]

>"Press Release:  

North American Repower and Efficient Drivetrains, Inc. to Deliver First PHEV-RNG Armored Truck
Collaboration reduces emissions by 99.9 percent

OCEANSIDE, Calif. & MILPITAS, Calif.--(BUSINESS WIRE)--Two global leaders in developing and manufacturing advanced transportation vehicles have teamed up to manufacture a first-of-its-kind fleet of Class-5 armored vehicles that combine the benefits of Renewable Natural Gas (RNG) and zero emission Plug-In Hybrid Electric Vehicle (PHEV) technology.

"We're excited to be partnering with EDI on this breakthrough innovation"

North American Repower—California's leading natural gas engine management and conversion technology company— and Efficient Drivetrains, Inc.—a global leader in developing high-efficiency Plug-in Hybrid Electric Vehicle solution—will convert a fleet of six 26,000 pound, Class-5 medium-duty armored vehicles operated by Sectran Security into PHEV vehicles that run on electricity and renewable natural gas—known as "Zero Emission with Range Extension" vehicles. The collaboration supports the dramatic acceleration in California toward a zero emissions environment. Today, the Sectran Security trucks make frequent stops as part of their highly congested urban routes. At each stop, the engines are kept idling for security purposes, but now risk violating California's strict diesel idling regulations, which prohibit idling the engine for more than five minutes. With the modernized trucks, Sectran can completely eliminate engine idling by operating in all-electric mode during stop-and-go operations on urban routes and in hybrid-mode during highway operations. When complete, the vehicles possess impressive performance statistics—the demonstration trucks will enable Sectran to reduce annual diesel consumption by 31,000+ gallons, significantly reduce annual fuel costs, and reduce emissions by 99.9 percent. [...]"<

Scooped by Duane Tilden
Scoop.it!

Rationale Behind Construction Site C Dam on Peace River in BC Deeply Flawed

Rationale Behind Construction Site C Dam on Peace River in BC Deeply Flawed | Green Energy Technologies & Development | Scoop.it

Thirty five years ago concerned ratepayers challenged BC Hydro, the BC Utilities Commission and the Provincial government to admit that electricity conservation and small power projects were preferable to flooding the farm lands of the Peace Valley. Building another dam was not the answer then, and it is not the answer today. 


Image Credit:  http://www.straight.com/news/739671/david-suzuki-site-c-dam-proposal-puts-treaty-commitments-test

Duane Tilden's insight:

>" Roger Bryenton & Associates, 2015 [...] Conservation, plus a variety of smaller, low impact green projects can save and produce more electricity at a lower cost, with less risk, than Site C.

British Columbia has demonstrated its responsibility to live in harmony with nature when building, living and developing resources; doing “more with less”. BC Hydro is to be commended on using conservation and Independent Power producers to supply a reliable and robust power system. Ratepayers recognize these efforts and will help by saving electricity, conservation, and using small scale, “flexible” projects which can readily be adjusted to changes in demand.

Presently, we are excluding the Columbia River Treaty benefits, Alcan and Teck-Cominco power resources, and time-of- use rates which could optimize the “provincial system”. Power from the Columbia River Treaty is being sold at market rates of 3 to 4 cents/kWh rather than be included in the supply equation, where it would be worth 8 to 10 (or more) cents/kWh. Alcan and Cominco have massive dams and plants that could contribute capacity when needed, while regulations presently prevent time-of-use rates to reduce peak demand, a technique used by leading utilities worldwide.


Site C is not needed for a number of reasons:


1. Columbia River Entitlement – Both the Capacity and the Annual Energy of Site C are close to what the Columbia River entitlement offers: Site C is 1,100MW and 5,100 GWh/yr while Columbia is 1,250 MW and 4,400 GWh/yr.

2. Cost – In the original submission, the cost estimate of Site C was $5.7 Billion, or $83/MWh (8.3 cents/kWh). During hearings this increased, first to $7.9 Billion , or $114/MWh (11.4 cents/kWh). 
It has increased again, to the present $8.8 billion or $126 /MWh ( 12.6 cents /kWh). By BC Hydro’s own calculations, there are literally hundreds of clean, renewable small projects that can provide capacity and energy under $114, and many more under $126/MWh. 

3. Timing - Even a small amount of new power will not be needed until 2027! A massive dam takes 8 to 10 years to complete. Conservation and small power plants require a few months to 3 years to complete. Building an 1,100 MW dam if we only need 100MW is “like using a sledge hammer to crack a nut” (A. Lovins). We will not need 1100MW even by 2033 when conservation and small plants can better follow growth .


4. Capacity – Firm Capacity is only needed for a few hours every year! We do not need a huge dam to do this. 

- Time of use rates. By 2020 almost 400MW of savings at $31/kW-yr would be available by
significantly shifting peak loads. BC Hydro does this operationally but has refused to include it in their submitted plan. 
- Pumped storage at Mica and elsewhere is economical at these prices – we do not need to flood more farmland. 
- Geothermal also offers firm capacity. 
- An Agreement with Alcan for some peaking, a few hours each year is feasible, but not proposed in the Site C plan.

5. Energy – Conservation, doing “more with less”, has been effective during the past 35 years, when Site C hearings originally delayed this project! 

“Deep DSM” – Demand-Side Management, Option 5 of BC Hydro’s Integrated Resource Plan, can save almost 1,600MW by 2020 with energy savings of 9,600 GWh/yr. This is almost 400MW and 2000 GWh/ yr more than DSM 2. The cost is only $49/MWh; roughly half of what Site C would cost! 

[...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Geothermal Energy Projects in BC Show Economic Promise

Geothermal Energy Projects in BC Show Economic Promise | Green Energy Technologies & Development | Scoop.it
Two potential geothermal energy projects near Pemberton could generate electricity for about seven cents a kilowatt hour — only slightly higher than the 5.8 cents to 6.1 cents a kilowatt hour cost estimate of the Site C dam project.
Duane Tilden's insight:

>" [...] 

There are no geothermal energy projects operating in B.C. but the study estimated the cost per kilowatt hour for the nine sites would range from 6.9 to 7.1 cents for Pebble Creek and Meager Creek near Pemberton to 17.6 cents for Clarke Lake near Fort Nelson.

BC Hydro senior strategic technology specialist Alex Tu said some of the projects appear promising but stressed the cost estimates are still "very uncertain" and carry a lot of risk.

"Even though it says seven cents a kilowatt hour, it's still a risky proposition," he said. "All the geothermal in the province is still looked at as very uncertain and very high risk but if you can make the project happen, seven cents is a good price."

Tu noted BC Hydro invested tens of millions of dollars drilling at the two Pemberton area sites in the 1970s and 1980s but could only produce enough steam for a 20-kilowatt demonstration facility that operated for 18 months.

Geothermal power facilities work by drilling into the earth and redirecting steam or hot water into turbines that convert the energy from the fluid into electricity.

Tu said Hydro has always been open to geothermal power as an alternative energy source but no geothermal projects have ever been submitted to Hydro in any of its calls for power from independent power producers.

Hydro's standing offer program offers to pay producers $100 a megawatt hour for smaller energy projects of up to 15 megawatts. The two Pemberton area geothermal sites each have estimated capacities of 50 to 100 megawatts.

Borealis GeoPower chief geologist Craig Dunn, whose Calgary-based firm hopes to build two geothermal power plants in B.C. by 2018, said he was excited by the Kerr Wood study, which was commissioned by BC Hydro and Geoscience BC.

"I think it's a giant step forward in recognizing that geothermal is a viable energy opportunity for the province of British Columbia," he said.

Dunn said the drilling and turbine technology associated with geothermal power continues to improve, making that form of energy more economically viable than ever.

"As a private developer, I know that my costs are significantly less than the estimates," he said.

Tu estimated the cost of the two proposed Borealis geothermal sites near Valemount and Terrace at about $120 to $140 a megawatt hour but Dunn said current drilling economics — with many drilling rigs now inactive due to the oil industry slowdown — could cut that estimate by 25 to 50 per cent.  [...]"<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Arduino based solar power controller to take home appliances off grid

Arduino based solar power controller to take home appliances off grid | Green Energy Technologies & Development | Scoop.it
Where's the middle ground between having a small solar charger for your gadgets, and having a rooftop solar array capable of powering your entire house? The UNplug might know.
Duane Tilden's insight:

>" [...] The UNplug solar controller was invented by Markus Löffler in response to his own power blackout experience, where several days without electricity meant a lot of spoiled food. Löffler, an entrepreneur and software engineer living in Altadena, California, developed the UNplug device to serve as a simple and inexpensive way to begin going solar, because it serves as the brain of a micro-solar system, starting as small as a single solar panel and a small battery bank. [...]

During the day, UNplug feeds electricity from the solar panel into the appliances connected to it, and charges the battery bank, and then when the sun goes down, it seamlessly switches over those devices to using grid power. In the event of a blackout, UNplug then powers those same appliances from the battery bank, allowing certain crucial electricity needs to continue to be met during an outage.

The UNplug could allow homes to take at least some of their daily electrical loads off the grid, such as the fridge or other household devices, while also serving as an uninterruptible power supply (UPS) in the event of a power outage. The device doesn't function all by itself, of course, and requires solar panels, batteries, an inverter, and other accessories, but according to Löffler's campaign page, a small system could be set up for an additional $570 or so, on top of the cost of the UNplug, so the entire investment could be under $1000. (His shopping list is here.) [...]"<


more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Nonpetroleum share of transportation fuel energy at highest level since 1954

Nonpetroleum share of transportation fuel energy at highest level since 1954 | Green Energy Technologies & Development | Scoop.it

"In the United States, petroleum is by far the most-consumed transportation fuel. But recently the share of fuels other than petroleum for U.S. transportation has increased to its highest level since 1954, a time when the use of coal-fired steam locomotives was declining and automobile use was growing rapidly."

Duane Tilden's insight:

>" [...] After nearly 50 years of relative stability at about 4%, the nonpetroleum share started increasing steadily in the mid-2000s, reaching 8.5% in 2014. Of the nonpetroleum fuels used for transportation, fuel ethanol has grown most rapidly in recent years, increasing by nearly one quadrillion British thermal units (Btu) between 2000 and 2014. Nearly all of the ethanol consumed was blended into gasoline in blends of 10% or less, but a small amount was used in vehicles capable of running on higher blends as the availability of those flexible-fuel vehicles grew. Consumption of biodiesel, most of it blended into diesel fuel for use in trucks and buses, grew to more than 180 trillion Btu by 2014.

In 2014, transportation use of natural gas reached a historic high of 946 trillion Btu, 3.5% of all natural gas used in the United States. Transportation natural gas is mostly used in the operation of pipelines, primarily to run compressor stations and to deliver natural gas to consumers. Natural gas used to fuel vehicles, although a much smaller amount, has more than doubled since 2000.

Electricity retail sales to the transportation sector grew more than 40% from 2000 through 2014, although sales have declined slightly since 2007. Electricity for transportation is mostly sold to railroads and railways. However, this increase does not include the consumption of electricity in electric vehicles that are not used in mass transit, because charging stations for these types of vehicles are likely associated with meters on residential, commercial, or industrial customer sites where this specific use may not be differentiated from other uses. [...]"<

 
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

DOE Invests in Super-Critical Carbon Dioxide Turbine Research to Replace Steam for Electric Power Generators

DOE Invests in Super-Critical Carbon Dioxide Turbine Research to Replace Steam for Electric Power Generators | Green Energy Technologies & Development | Scoop.it
The U.S. Department of Energy hopes to create a more efficient turbine that uses CO2 to make electricity
Duane Tilden's insight:

"> [...] 

Whether burning coal, concentrating sunlight or splitting atoms, most thermal power plants use the energy for the same thing: heating water into steam to drive a turbine. Steam-based generation produces 80 percent of the world's electricity.

After more than a century of incremental improvements in the steam cycle, engineers have plucked most of the low-hanging fruit and are chasing diminishing returns, spending millions of dollars for every percentage point of efficiency improvement. These upgrades propagate to other steps in electricity production, allowing power plants to extract more work for a given unit of fuel.

In a fossil fuel-fired generator, this means less carbon dioxide emissions for the same unit of electricity produced. For a solar thermal plant, this results in higher capacity at lower operating costs.

Now engineers are looking into replacing steam with supercritical carbon dioxide, a technique that could unlock up to 50 percent greater thermal efficiency using a smaller, cheaper turbine.

Last month, in a budget briefing and in two different hearings before Congress, Energy Secretary Ernest Moniz specifically mentioned the Department of Energy's supercritical carbon dioxide initiatives. The department's 2016 budget request allocates $44 million for research and development on this front, including a 10-megawatt supercritical turbine demonstration system.

A simpler, smaller, cleaner machine
The term "supercritical" describes the state of carbon dioxide above its critical temperature and pressure, 31 degrees Celsius and 73 atmospheres. Under these conditions, carbon dioxide has a density similar to its liquid state and fills containers the way it would as a gas.

Coffee producers are already using supercritical carbon dioxide to extract caffeine from beans. Materials companies are also using it to make plastics and ceramics.

"From a thermodynamic perspective, it's a very good process fluid," said Klaus Brun, machinery director at the Southwest Research Institute, a nonprofit research and development group. "You get a fairly efficient cycle and a reasonable firing temperature."

In its supercritical state, carbon dioxide is nearly twice as dense as steam, resulting in a very high power density. Supercritical carbon dioxide is easier to compress than steam and allows a generator to extract power from a turbine at higher temperatures.

The net result is a simpler turbine that can be 10 times smaller than its steam equivalent. A steam turbine usually has between 10 and 15 rotor stages. A supercritical turbine equivalent would have four.

"We're looking at a turbine rotor shaft with four stages on it that's 4 inches in diameter, 4 feet long and could power 1,000 homes," said Richard Dennis, turbine technology manager at the National Energy Technology Laboratory.

He noted that the idea of a supercritical carbon dioxide power cycle dates back to the 1940s, but steam cycles were already very efficient, well-understood and cheap, creating an uphill slog for a new power block to catch on. In addition, engineers were still finding ways to improve the combustion side of power production, so the need to improve the generation side of the plant wasn't as acute until recently. [...]"<

 
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

"Behind the Meter" Energy Storage Solution Manages Peak Demand Charges for Buildings

"Behind the Meter" Energy Storage Solution Manages Peak Demand Charges for Buildings | Green Energy Technologies & Development | Scoop.it

Sharp Electronics Corporation's [...] 30 kW storage system is coupled with Baker's existing 90 kW solar PV system. Baker Electric, a key channel ally of Sharp, has selected theSmartStorage® solution to help cap expensive utility demand charges for its commercial building customers.

Duane Tilden's insight:

>" [...] 

Peak demand charges are the fastest growing part of utility bills for commercial and industrial customers and can represent up to 50 percent of a company's monthly utility bill. The SmartStorage® energy storage solution is a unique battery-based demand management system designed to reduce commercial and industrial buildings' peak electricity use. It combines Sharp's intelligent energy management system with cutting-edge hardware, operating seamlessly as a stand-alone solution or when deployed along with a solar system.

"Baker Electric brings decades of experience offering innovative technologies to its customers, including solar solutions in recent years. Their PV solutions coupled with our SmartStorage® energy storage solution provide a powerful duo for building owners wanting to lower peak demand usage without disrupting their day-to-day operations," commented Carl Mansfield, General Manager of Sharp Electronics Corporation's Energy Systems and Services Group.

The SmartStorage® system employs sophisticated, predictive analytics and controls to manage the release of energy from the battery, resulting in high performance, high system efficiency and world-class reliability. The SmartStorage® system can also 

make existing solar installations economically viable where they otherwise would not be.

Baker Electric's SmartStorage® system installation is backed by Sharp's innovative 10-year Asset Management Service Agreement which provides all routine and unscheduled maintenance coupled with a 10-year demand reduction performance guarantee.

"Our customers have come to expect the highest quality, highest performing products available on the market. After an exhaustive search in identifying the best solution to help lower demand charges for our customers and our own facility, we chose Sharp's SmartStorage® system, not only because it exceeds the quality standards we are known for, but because we also have confidence in Sharp standing behind its product by offering its unique 10-year Asset Management Service Agreement and performance guarantee," said Ted Baker, CEO of Baker Electric.

The SmartStorage® energy storage solution has undergone more than 18 months of field testing benefitting from Sharp's world-class attention to quality and safety. The energy storage component of Sharp's SmartStorage® system consists of state-of-the art lithium-ion batteries, which have been tested, listed and labeled as compliant with UL safety standards.

 [...]"<
more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Global Distributed Energy Storage Capacity Expected to Increase Nearly 10-Fold

Global Distributed Energy Storage Capacity Expected to Increase Nearly 10-Fold | Green Energy Technologies & Development | Scoop.it

The worldwide capacity of distributed energy storage systems is expected to increase nearly 10-fold over the next 3 years, according to a new report from Navigant Research, which analyzed the global market for distributed energy storage systems through 2024.

Duane Tilden's insight:

>" [...] 

The primary conclusion of the report is that distributed storage is one of the fastest-growing markets for energy storage globally, thanks to the focus of rapid innovation and intense competition, causing the market to greatly exceed market expectations. This growth and subsequent demand has led to grid operators, utilities, and governments looking to encourage storage installations that are physically situated closer to the retail electrical customer.

According to the report from Navigant Research, worldwide capacity of distributed energy storage systems (DESSs) is expected to grow from its current 276 MW, to nearly 2,400 MW in 2018.

“Distributed storage is among the fastest-growing markets for energy storage globally,” says Anissa Dehamna, senior research analyst with Navigant Research. “In particular, residential and commercial energy storage are expected to be the focus of technological advances and market activity in the coming years.” [...]

Two specific types of DESS are classified in the report: Community energy storage refers to systems installed at the distribution transformer level; Residential and commercial storage, on the other hand, refer to “two behind-the-meter applications targeted at either homeowners or commercial and industrial customers.” Together, these two technologies include lithium ion (Li-ion), flow batteries, advanced lead-acid, and other next-generation chemistries, such as sodium metal halide, ultracapacitors, and aqueous hybrid ion.

Similarly, the two categories of DESS each have specific market drivers. Community energy storage is being driven by the improved reliability yielded in case of outages, load leveling and peak shifting, and improved power quality. Almost as importantly, community energy storage systems can communicate with a grid operator’s operating system, allowing the operator to mitigate disruptions to the grid.

Given its primary use as an energy cost management solution, the prime driver behind commercial storage systems is the rate structure for customers. "<

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

New California Housing Community Goes Zero Net Energy

New California Housing Community Goes Zero Net Energy | Green Energy Technologies & Development | Scoop.it

California has set a goal for all new residential construction in the state to be ZNE by 2020 and all new commercial construction to be zero net energy by 2030. Spring Lake uses no natural gas and receives most of its power from photovoltaics. 

Duane Tilden's insight:

>"The $13 million Spring Lake project in Woodland has 62 affordable apartments and townhomes for agricultural workers and their families.  [...]

“The community will generate at least as much energy as it consumes,” says Vanessa Guerra, a project manager with Mutual Housing California, a Sacramento-based non-profit that develops sustainable affordable housing communities.

The California Energy Commission adopted zero net energy goals in its 2007 Integrated Energy Policy Report (IEPR). It further defined what ZNE buildings are and laid out the necessary steps and renewables options for achieving the ZNE 2020 goals in the 2013 IEPR. 

The project was financed by the U.S. Department of Agriculture, Citibank, Wells Fargo Bank, the California Department of Housing and Community Development and the City of Woodland."<

more...
Pat Heffernan's curator insight, March 21, 8:50 AM

#ZNE is a positive trend, but much of the country continues to lag. #Vermont


Scooped by Duane Tilden
Scoop.it!

Commission Targets Energy Efficiency Standards for Computers and Monitors

California regulators are intensifying efforts to wring every possible electron out of common household devices.
Duane Tilden's insight:

>" [...] The California Energy Commission just released the latest in a long line of energy-efficiency standards [...]. Past targets have included refrigerators, air conditioners, flat-screen televisions, battery chargers and dozens of other appliances and electronic devices.

The commission is writing proposed minimum power consumption standards that it estimates would save 2,702 gigawatt hours a year of electricity. That's roughly the combined usage of the cities of Long Beach, Anaheim, Huntington Beach and Riverside. Utility customers could shave a total of $430 million off their annual electric bills, or about $20 a year for a household that owns one desktop computer, one laptop and one monitor.

Computers and monitors are among the leading users of energy in California and "spend roughly half their time ... on but not being used." Commissioner Andrew McAllister said.

Boosting efficiency is a good deal, he said. For example, a $2 investment in manufacturing a more power-stingy desktop computer would save $69 over five years, he said.

Electronics manufacturers question the commission's arithmetic. They prefer voluntary efficiency programs, such as a 2012 manufacturers' agreement that reduced the energy consumption of cable and satellite television set-top boxes. Consumers saved $168 million in 2013, according to an industry report.

California should let electronics makers develop their own products, said Douglas Johnson, vice president for technology policy for the Consumer Electronics Assn. "We don't wait for regulations to make products more efficient."

Aggressive energy-efficiency standards, the commission argues, has helped California keep its per-capital electric power consumption flat for the last 30 years, while the rest of the country's has seen power use jump 40%. [...]"<

 

more...
No comment yet.
Scooped by Duane Tilden
Scoop.it!

Bio-Gas Waste Treatment System Installs Remote Fuel Station for Fleet

Bio-Gas Waste Treatment System Installs  Remote Fuel Station for Fleet | Green Energy Technologies & Development | Scoop.it
MADISON, WI--(Marketwired - Mar 3, 2015) - BioCNG, LLC announced that the St. Landry Parish Solid Waste Disposal District's BioCNG Vehicle Fuel Project, which was fully commissioned in 2012, will be expanded to include an additional BioCNG system and a remote CNG fueling station. BioCNG, which partnered with the District...
Duane Tilden's insight:

>"[...] 

The expansion is part of a contract between St. Landry Solid Waste and Progressive Waste Systems. In exchange for continuation of its existing waste hauling contract with the District, Progressive Waste has agreed to purchase new CNG-powered trucks, and will have access to the increased BioCNG generated from the expanded system. The expanded project will also provide BioCNG fuel to additional St. Landry Parish clients.

St. Landry Parish Solid Waste Disposal District executive director Katry Martin, said, "The fact that the hauler that delivers waste to the Parish landfill will fuel its trucks with the biogas generated from the landfill is a true example of the power of renewable energy sources and a preview of the future of biogas."

The St. Landry Parish BioCNG Vehicle Fuel Project received the U.S. Environmental Protection Agency's Landfill Methane Outreach Program (LMOP) 2012 Project of the Year award. The system was originally designed to serve public works trucks and the sheriffs' vehicle fleet. Now, with a new fuel purchaser, the District will increase on-site BioCNG production and provide an off-site CNG fueling station. The District can transport the BioCNG to the off-site location in a compressed gas tube trailer. [...]"<

 
more...
No comment yet.