Many researchers believe that physics will not be complete until it can explain not just the behaviour of space and time, but where these entities come from.

“Imagine waking up one day and realizing that you actually live inside a computer game,” says Mark Van Raamsdonk, describing what sounds like a pitch for a science-fiction film. But for Van Raamsdonk, a physicist at the University of British Columbia in Vancouver, Canada, this scenario is a way to think about reality. If it is true, he says, “everything around us — the whole three-dimensional physical world — is an illusion born from information encoded elsewhere, on a two-dimensional chip”. That would make our Universe, with its three spatial dimensions, a kind of hologram, projected from a substrate that exists only in lower dimensions.

This 'holographic principle' is strange even by the usual standards of theoretical physics. But Van Raamsdonk is one of a small band of researchers who think that the usual ideas are not yet strange enough. If nothing else, they say, neither of the two great pillars of modern physics — general relativity, which describes gravity as a curvature of space and time, and quantum mechanics, which governs the atomic realm — gives any account for the existence of space and time. Neither does string theory, which describes elementary threads of energy. Van Raamsdonk and his colleagues are convinced that physics will not be complete until it can explain how space and time emerge from something more fundamental — a project that will require concepts at least as audacious as holography.

But, where is the evidence that there actually is anything more fundamental than space and time? A provocative hint comes from a series of startling discoveries made in the early 1970s, when it became clear that quantum mechanics and gravity were intimately intertwined with thermodynamics, the science of heat. In 1974, most famously, Stephen Hawking of the University of Cambridge, UK, showed that quantum effects in the space around a black hole will cause it to spew out radiation as if it was hot. Other physicists quickly determined that this phenomenon was quite general. Even in completely empty space, they found, an astronaut undergoing acceleration would perceive that he or she was surrounded by a heat bath. The effect would be too small to be perceptible for any acceleration achievable by rockets, but it seemed to be fundamental. If quantum theory and general relativity are correct — and both have been abundantly corroborated by experiment — then the existence of Hawking radiation seemed inescapable.

A second key discovery was closely related. In standard thermodynamics, an object can radiate heat only by decreasing its entropy, a measure of the number of quantum states inside it. And so it is with black holes: even before Hawking's 1974 paper, Jacob Bekenstein, now at the Hebrew University of Jerusalem, had shown that black holes possess entropy. But there was a difference. In most objects, the entropy is proportional to the number of atoms the object contains, and thus to its volume. But a black hole's entropy turned out to be proportional to the surface area of its event horizon — the boundary out of which not even light can escape. It was as if that surface somehow encoded information about what was inside, just as a two-dimensional hologram encodes a three-dimensional image.

In 1995 then, Ted Jacobson, a physicist at the University of Maryland in College Park, combined these two findings, and postulated that every point in space lies on a tiny 'black-hole horizon' that also obeys the entropy–area relationship. From that, he found, the mathematics yielded Einstein's equations of general relativity — but using only thermodynamic concepts, not the idea of bending space-time. Ted's result suggested that gravity is statistical, a macroscopic approximation to the unseen constituents of space and time.

In 2010, this idea was taken a step further by Erik Verlinde, a string theorist at the University of Amsterdam, who showed that the statistical thermodynamics of the space-time constituents — whatever they turned out to be — could automatically generate Newton's law of gravitational attraction. In separate work, Thanu Padmanabhan, a cosmologist at the Inter-University Centre for Astronomy and Astrophysics in Pune, India, showed that Einstein's equations can be rewritten in a form that makes them identical to the laws of thermodynamics — as can many alternative theories of gravity. Padmanabhan is currently extending the thermodynamic approach in an effort to explain the origin and magnitude of dark energy: a mysterious cosmic force that is accelerating the Universe's expansion.

Via

Dr. Stefan Gruenwald