Science, Technolo...
Follow
Find tag "matter"
1.7K views | +0 today
Science, Technology, and Current Futurism
Technology/Futurism/Science/Education/SystemsThinking/
Curated by Sharrock
Your new post is loading...
Your new post is loading...
Rescooped by Sharrock from Amazing Science
Scoop.it!

Scientists have discovered a new state of matter, called 'Jahn-Teller metals'

Scientists have discovered a new state of matter, called 'Jahn-Teller metals' | Science, Technology, and Current Futurism | Scoop.it

An international team of scientists has announced the discovery of a new state of matter in a material that appears to be an insulator, superconductor, metal and magnet all rolled into one, saying that it could lead to the development of more effective high-temperature superconductors.


Why is this so exciting? Well, if these properties are confirmed, this new state of matter will allow scientists to better understand why some materials have the potential to achieve superconductivity at a relativity high critical temperature (Tc) - "high" as in −135 °C as opposed to −243.2 °C. Because superconductivity allows a material to conduct electricity without resistance, which means no heat, sound, or any other form of energy release, achieving this would revolutionise how we use and produce energy, but it’s only feasible if we can achieve it at so-called high temperatures.


As Michael Byrne explains, when we talk about states of matter, it’s not just solids, liquids, gases, and maybe plasmas that we have to think about. We also have to consider the more obscure states that don’t occur in nature, but are rather created in the lab - Bose–Einstein condensate, degenerate matter, supersolids and superfluids, and quark-gluon plasma, for example. 


By introducing rubidium into carbon-60 molecules - more commonly known as 'buckyballs' - a team led by chemist Kosmas Prassides from Tokohu University in Japan was able to change the distance between them, which forced them into a new, crystalline structure. When put through an array of tests, this structure displayed a combination of insulating, superconducting, metallic, and magnetic phases, including a brand new one, which the researchers have named 'Jahn-Teller metals'. 


Named after the Jahn-Teller effect, which is used in chemistry to describe how at low pressures, the geometric arrangement of molecules and ions in an electronic state can become distorted, this new state of matter allows scientists to transform an insulator - which can’t conduct electricity - into a conductor by simply applying pressure.


There’s a whole lot of lab-work to be done before this discovery will mean anything for practical energy production in the real world, but that’s science for you. And it’s got people excited already, as chemist Elisabeth Nicol from the University of Guelph in Canada told Hamish Johnston at PhysicsWorld: "Understanding the mechanisms at play and how they can be manipulated to change the Tc surely will inspire the development of new superconducting materials".


Via Dr. Stefan Gruenwald
more...
No comment yet.
Rescooped by Sharrock from Amazing Science
Scoop.it!

Bose-Einstein Condensate Made at Room Temperature for First Time

Bose-Einstein Condensate Made at Room Temperature for First Time | Science, Technology, and Current Futurism | Scoop.it

The quantum mechanical phenomena, known as Bose-Einstein Condensate (BEC), was first demonstrated in 1995 when experiments proved that the septuagenarian theory did in fact exist in the physical world. Of course, to achieve the phenomena a state of near absolute zero (-273 Celsius, -459 Fahrenheit) had to be created.

 

Now researchers at IBM’s Binnig and Rohrer Nano Center have been able to achieve the BEC at room temperature using a specially developed polymer, a laser, and some mirrors.

 

IBM believes that this experiment could potentially be used in the development of novel optoelectronic devices, including energy-efficient lasers and ultra-fast optical switches. One application for BEC is for the building of so-called atom lasers, which could have applications ranging from atomic-scale lithography to measurement and detection of gravitational fields.

 

For the first time, the IBM team achieved it at room temperature by placing a thin polymer film—only 35 nanometers thick—between two mirrors and then shining a laser into the configuration. The bosonic particles are created as the light travels through the polymer film and bounces back and forth between the two mirrors.

 

While this BEC state of matter only lasts for a few picoseconds (trillionths of a second), the IBM researchers believe that it exists long enough to create a source of laser-like light or an optical switch that could be used in optical interconnects.

 

“That BEC would be possible using a polymer film instead of the usual ultra-pure crystals defied our expectations,” said Dr. Thilo Stöferle, a physicist, at IBM Research, in a press release. “It’s really a beautiful example of quantum mechanics where one can directly see the quantum world on a macroscopic scale.”

 

Now that the researchers have managed to trigger the effect, they are now looking to gain more control over it. In the process they will be evaluating how the effect could best be exploited for a range of applications. One interesting application that will be examined is using the BEC in analog quantum simulations for such macroscopic quantum phenomena as superconductivity, which is extremely difficult to model with today’s simulation approaches.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Rescooped by Sharrock from Gavagai
Scoop.it!

New state of matter discovered

New state of matter discovered | Science, Technology, and Current Futurism | Scoop.it

There was a time when states of matter were simple: Solid, liquid, gas. Then came plasma, Bose -Einstein condensate, supercritical fluid and more. Now the list has grown by one more, with the unexpected discovery of a new state dubbed 'dropletons' that bear some resemblance to liquids but occur under very different circumstances. 


Via Luca Baptista
more...
No comment yet.