Science, Technolo...
Follow
Find tag "lasers"
1.8K views | +2 today
Science, Technology, and Current Futurism
Technology/Futurism/Science/Education/SystemsThinking/
Curated by Sharrock
Your new post is loading...
Your new post is loading...
Rescooped by Sharrock from Amazing Science
Scoop.it!

Fusion Lasers Compress Diamond To Pressures Of 50 Million Earth Atmospheres (5 Terapascals)

Fusion Lasers Compress Diamond To Pressures Of 50 Million Earth Atmospheres (5 Terapascals) | Science, Technology, and Current Futurism | Scoop.it

Physicists reported recently that they have successfully used the lasers built for fusion reactions at the National Ignition Facilityin Lawrence Livermore National Laboratory to compress a synthetic diamond to pressures of 50 million Earth atmospheres (5 terapascals).  For the first time scientists measured pressure-density curves of matter at trillion pascal pressures, an extreme environment found in the core of gas giants and super Earth planets.

 

A tiny sample of synthetic diamond, millimeter-sized and in the shape of a cylinder, was held upright and put into the crosshairs of 176 high powered fusion laser beams.  The beams have total peak power of 2200 gigawatts (GW).  In comparison, a nuclear power plant only produces as much as energy at a rate of 0.5 to 2 GW.  Since power is the energy output over time, the laser beams can only run a very short time at such power, so the total output of energy is not high.

 

Half the beams are focused on the top half of the cylinder and the other half on the bottom.  This squeezes the cylinder when the lasers fire.  Upon firing, the physicists measured the rate of diamond material moving under the tremendous heating and counter-reactions.  As the cylindrical piece of diamond is compressed, its middle bulges out at extremely high velocities.  The measured peak velocity was 109,000 miles per hour, or about 45 kilometers per second.

 

They found that at the peak pressure of 5 trillion pascals, or equivalently 50 million Earth atmospheres, the density of the diamond had more than tripled.  Therefore the diamond was compressed to three times a smaller volume than before, making its density equal to that of lead.

 

The results were compared to a type of computer simulation called density functional theory (DFT).  DFT is based on a branch of physics known as quantum mechanics.  While it is an approximate method, meaning that accuracy of representing the underlying physics is sacrificed for purposes of speed, it is quite successful in predicting many complex aspects of matter.  The researchers used two types of theories in DFT and showed that the measured results fall right in between the computer predictions.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Rescooped by Sharrock from Amazing Science
Scoop.it!

Bose-Einstein Condensate Made at Room Temperature for First Time

Bose-Einstein Condensate Made at Room Temperature for First Time | Science, Technology, and Current Futurism | Scoop.it

The quantum mechanical phenomena, known as Bose-Einstein Condensate (BEC), was first demonstrated in 1995 when experiments proved that the septuagenarian theory did in fact exist in the physical world. Of course, to achieve the phenomena a state of near absolute zero (-273 Celsius, -459 Fahrenheit) had to be created.

 

Now researchers at IBM’s Binnig and Rohrer Nano Center have been able to achieve the BEC at room temperature using a specially developed polymer, a laser, and some mirrors.

 

IBM believes that this experiment could potentially be used in the development of novel optoelectronic devices, including energy-efficient lasers and ultra-fast optical switches. One application for BEC is for the building of so-called atom lasers, which could have applications ranging from atomic-scale lithography to measurement and detection of gravitational fields.

 

For the first time, the IBM team achieved it at room temperature by placing a thin polymer film—only 35 nanometers thick—between two mirrors and then shining a laser into the configuration. The bosonic particles are created as the light travels through the polymer film and bounces back and forth between the two mirrors.

 

While this BEC state of matter only lasts for a few picoseconds (trillionths of a second), the IBM researchers believe that it exists long enough to create a source of laser-like light or an optical switch that could be used in optical interconnects.

 

“That BEC would be possible using a polymer film instead of the usual ultra-pure crystals defied our expectations,” said Dr. Thilo Stöferle, a physicist, at IBM Research, in a press release. “It’s really a beautiful example of quantum mechanics where one can directly see the quantum world on a macroscopic scale.”

 

Now that the researchers have managed to trigger the effect, they are now looking to gain more control over it. In the process they will be evaluating how the effect could best be exploited for a range of applications. One interesting application that will be examined is using the BEC in analog quantum simulations for such macroscopic quantum phenomena as superconductivity, which is extremely difficult to model with today’s simulation approaches.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Scooped by Sharrock
Scoop.it!

33rd Square: 'Ultracold' Molecules May Help Advance Quantum Computing

33rd Square: 'Ultracold' Molecules May Help Advance Quantum Computing | Science, Technology, and Current Futurism | Scoop.it
Researchers have created a new type of 'ultracold' molecule, using lasers to cool atoms nearly to absolute zero and then gluing them together, a technology that might be applied to quantum computing, precise sensors and advanced simulations.
more...
No comment yet.