Correlations among neurons are supposed to play an important role in computation and information coding in the nervous system. Empirically, functional interactions between neurons are most commonly assessed by cross-correlation functions. Recent studies have suggested that pairwise correlations may indeed be sufficient to capture most of the information present in neural interactions. Many applications of correlation functions, however, implicitly tend to assume that the underlying processes are stationary. This assumption will usually fail for real neurons recorded in vivo since their activity during behavioral tasks is heavily influenced by stimulus-, movement-, or cognition-related processes as well as by more general processes like slow oscillations or changes in state of alertness. To address the problem of nonstationarity, we introduce a method for assessing stationarity empirically and then “slicing” spike trains into stationary segments according to the statistical definition of weak-sense stationarity. We examine pairwise Pearson cross-correlations (PCCs) under both stationary and nonstationary conditions and identify another source of covariance that can be differentiated from the covariance of the spike times and emerges as a consequence of residual nonstationarities after the slicing process: the covariance of the firing rates defined on each segment. Based on this, a correction of the PCC is introduced that accounts for the effect of segmentation. We probe these methods both on simulated data sets and on in vivo recordings from the prefrontal cortex of behaving rats. Rather than for removing nonstationarities, the present method may also be used for detecting significant events in spike trains. - by Quiroga-Lombard CS et al., Journal of Neurophysiology July 15, 2013 vol. 110 no. 2 562-572


Via Julien Hering, PhD