Plant pathogens a...
Follow
9.4K views | +11 today
Plant pathogens and pests
Mainly dedicated to plant pathogens , mechanisms of pathogenicity, life cycles, epidemiology and plant breeding methods and results helping to prevent their propagation.  This site is complementary to the Plant-microbe Interactions (on the plant's side); Scoop-It site :        http://www.scoop.it/t/plant-pathogen-interactions-by-christophe-jacquet
Your new post is loading...
Your new post is loading...
Scooped by Christophe Jacquet
Scoop.it!

A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus

A Virulence Essential CRN Effector of  Phytophthora capsici  Suppresses Host Defense and Induces Cell Death in Plant Nucleus | Plant pathogens and pests | Scoop.it
Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt

Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt | Plant pathogens and pests | Scoop.it
Highlights



Thyme oil highly reduced 64% of gray mold incidence in tomato plants.


Thyme oil reduced Fusarium wilt severity to 30.76% in tomato plants grown in hydroponic system.


Thyme oil induced plant defense system which was mostly attributed to peroxidases accumulation.


Thyme oil seems to be more effective when applied to the roots.

Abstract

The potential of thyme essential oil in controlling gray mold and Fusarium wilt and inducing systemic acquired resistance in tomato seedlings and tomato grown in hydroponic system was evaluated. Thyme oil highly reduced 64% of Botrytis cinerea colonization on pretreated detached leaves compared to untreated control. Also, it played a significant decrease in Fusarium wilt severity especially at7 days post treatment when it was reduced to 30.76%. To explore the plant pathways triggered in response to thyme oil, phenolic compounds accumulation and peroxidase activity was investigated. Plant response was observed either after foliar spray or root feeding in hydroponics which was mostly attributed to peroxidases accumulation rather than phenolic compounds accumulation, and thyme oil seems to be more effective when applied to the roots.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses

Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses | Plant pathogens and pests | Scoop.it
Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0Tu), PLRV (P0PL) and Cucurbit aphid-borne yellows virus (P0CA) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0PL only. Genetic analysis showed that recognition of P0Tu by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0Tu mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum

Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to  Sclerotinia sclerotiorum | Plant pathogens and pests | Scoop.it
The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism

Host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism | Plant pathogens and pests | Scoop.it
Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host–pathogen–microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Histopathology of infection and colonization of Quercus ilex fine roots by Phytophthora cinnamomi

Histopathology of infection and colonization of Quercus ilex fine roots by Phytophthora cinnamomi | Plant pathogens and pests | Scoop.it
Quercus ilex is one of the European forest species most susceptible to root rot caused by the oomycete Phytophthora cinnamomi. This disease contributes to holm oak decline, a particularly serious problem in the ‘dehesas’ ecosystem of the southwestern Iberian Peninsula. This work describes the host–pathogen interaction of Q. ilex and P. cinnamomi, using new infection indices at the tissue level. Fine roots of 6-month-old saplings inoculated with P. cinnamomi were examined by light microscopy and a random pool of images was analysed in order to calculate different indices based on the measured area of pathogen structures. In the early stages of invasion, P. cinnamomi colonizes the apoplast and penetrates cortical cells with somatic structures. On reaching the parenchymatous tissues of the central cylinder, the pathogen develops different reproductive and survival structures inside the cells and then expands through the vascular system of the root. Some host responses were identified, such as cell wall thickening, accumulation of phenolic compounds in the middle lamella of sclerenchyma tissues, and mucilage secretion blocking vascular cells. New insights into the behaviour of P. cinnamomi inside fine roots are described. Host responses fail due to rapid expansion of the pathogen and a change in its behaviour from biotrophic to necrotrophic.
more...
No comment yet.
Rescooped by Christophe Jacquet from Plant & Evolution
Scoop.it!

Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants

As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to the Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional as well as sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.

Via Pierre-Marc Delaux
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Fine Mapping and Characterization of Candidate Genes that Control Resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions

Fine Mapping and Characterization of Candidate Genes that Control Resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions | Plant pathogens and pests | Scoop.it

Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'. Previously, we reported that the resistance to FLS in these two plant introductions (PIs) was controlled by a novel gene (s) on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s) in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype 'Blackhawk' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5', and 3' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s). The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP) assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.

 

 

more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers

Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81–15.65%), QYrdr.wgp-5AL (2.27–17.22%) and QYrdr.wgp-5BL.2 (2.42–15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94–10.19%), QYrdr.wgp-1DS (2.04–27.24%), QYrdr.wgp-3AL (1.78–13.85%) and QYrdr.wgp-6BL.2 (1.69–33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47–36.04%), QYrdr.wgp-5DL (9.27–11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.

more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs

Key message

Wheat yellow mosaic virus resistance of Madsen is governed by two complementary QTLs, Qym1 and Qym2 , located on chromosome arms 2DL and 3BS.

Abstract

Wheat yellow mosaic, caused by Wheat yellow mosaic virus (WYMV), is one of the most serious wheat diseases in East Asia. In this study, recombinant inbred lines (RILs, F9) from a cross between cultivars Madsen (resistant) and Hokushin (susceptible) grown in a WYMV-infected nursery field were tested for the presence of WYMV in leaves by enzyme-linked immunosorbent assay (ELISA) and genotyped by using genome-wide molecular markers. Two major QTLs were detected: Qym1 located between Xgwm539 and Xgwm349 on chromosome 2DL and Qym2 located between Xbarc147 and Xwmc623 on chromosome 3BS. The resistance alleles for both QTLs originated from Madsen. The third QTL Qym3 located near Xwmc457 on chromosome 4D, where the resistant allele for this QTL originated from Hokushin. Although the Qym3 was rather minor, it was essential to complement Qym1 and Qym2 for complete avoidance of WYMV infection. Near-isogenic lines carrying the resistance QTLs were developed by repeated backcrosses using Madsen as the donor parent and Hokushin as the recurrent parent. The lines that were resistant to WYMV (as tested by ELISA) were homozygous for the Madsen alleles at both Qym1 and Qym2. Qym1 dominance was partial, whereas that of Qym2 was nearly complete. Qym1 was closely linked to Xwmc41; Qym2 was closely linked to Xwmc754. These markers will be useful in marker-assisted selection in wheat breeding for WYMV resistance; this study will facilitate cloning the WYMV resistance genes.

 

 

more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

The Barley Powdery Mildew Candidate Secreted Effector Protein CSEP0105 Inhibits the Chaperone Activity of a Small Heat Shock Protein

The Barley Powdery Mildew Candidate Secreted Effector Protein CSEP0105 Inhibits the Chaperone Activity of a Small Heat Shock Protein | Plant pathogens and pests | Scoop.it
Pathogens secrete effector proteins to establish a successful interaction with their host. Here, we describe two barley (Hordeum vulgare) powdery mildew candidate secreted effector proteins, CSEP0105 and CSEP0162, which contribute to pathogen success and appear to be required during or after haustorial formation. Silencing of either CSEP using host-induced gene silencing significantly reduced the fungal haustorial formation rate. Interestingly, both CSEPs interact with the barley small heat shock proteins, Hsp16.9 and Hsp17.5, in a yeast two-hybrid assay. Small heat shock proteins are known to stabilize several intracellular proteins, including defense-related signaling components, through their chaperone activity. CSEP0105 and CSEP0162 localized to the cytosol and the nucleus of barley epidermal cells, whereas Hsp16.9 and Hsp17.5 are cytosolic. Intriguingly, only those specific CSEPs changed localization and became restricted to the cytosol when coexpressed with Hsp16.9 and Hsp17.5, confirming the CSEP-small heat shock protein interaction. As predicted, Hsp16.9 showed chaperone activity, as it could prevent the aggregation of Escherichia coli proteins during thermal stress. Remarkably, CSEP0105 compromised this activity. These data suggest that CSEP0105 promotes virulence by interfering with the chaperone activity of a barley small heat shock protein essential for defense and stress responses.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Frontiers | FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum | Plant-Microbe Interaction

Frontiers | FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum | Plant-Microbe Interaction | Plant pathogens and pests | Scoop.it
Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt, which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ⊿FocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ⊿FocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ⊿FocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ⊿FocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence

A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence | Plant pathogens and pests | Scoop.it
The introgression of disease resistance (R) genes encoding immunoreceptors with broad-spectrum recognition into cultivated potato appears to be the most promising approach to achieve sustainable management of late blight caused by the oomycete pathogen Phytophthora infestans. Rpi-blb2 from Solanum bulbocastanum, shows great potential for use in agriculture based on preliminary potato disease trials. Rpi-blb2 confers immunity by recognizing the P. infestans avirulence effector protein AVRblb2 after it is translocated inside the plant cell. This effector belongs to the RXLR class of effectors and is under strong positive selection. Structure-function analyses revealed a key polymorphic amino acid (position 69) in AVRblb2 effector that is critical for activation of Rpi-blb2. In this study, we reconstructed the evolutionary history of the Avrblb2 gene family and further characterized its genetic structure in worldwide populations. Our data indicates that Avrblb2 evolved as a single copy gene in a putative ancestral species of P. infestans and has recently expanded in the Phytophthora species that infect solanaceous hosts. As a consequence, at least four variants of AVRblb2 arose in P. infestans. One of these variants, with a Phe residue at position 69, evades recognition by the cognate resistance gene. Surprisingly, all Avrblb2 variants are maintained in pathogen populations. This suggests a potential benefit for the pathogen in preserving duplicated versions of AVRblb2 possibly because the variants may have different contributions to pathogen fitness in a diversified solanaceous host environment.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Access : Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay : Heredity

The occurrence and frequency of outcrossing in homothallic fungal species in nature is an unresolved question. Here we report detection of frequent outcrossing in the homothallic fungus Sclerotinia sclerotiorum. In using multilocus linkage disequilibrium (LD) to infer recombination among microsatellite alleles, high mutation rates confound the estimates of recombination. To distinguish high mutation rates from recombination to infer outcrossing, 8 population samples comprising 268 S. sclerotiorum isolates from widely distributed agricultural fields were genotyped for 12 microsatellite markers, resulting in multiple polymorphic markers on three chromosomes. Each isolate was homokaryotic for the 12 loci. Pairwise LD was estimated using three methods: Fisher’s exact test, index of association (IA) and Hedrick’s D′. For most of the populations, pairwise LD decayed with increasing physical distance between loci in two of the three chromosomes. Therefore, the observed recombination of alleles cannot be simply attributed to mutation alone. Different recombination rates in various DNA regions (recombination hot/cold spots) and different evolutionary histories of the populations could explain the observed differences in rates of LD decay among the chromosomes and among populations. The majority of the isolates exhibited mycelial incompatibility, minimizing the possibility of heterokaryon formation and mitotic recombination. Thus, the observed high intrachromosomal recombination is due to meiotic recombination, suggesting frequent outcrossing in these populations, supporting the view that homothallism favors universal compatibility of gametes instead of traditionally believed haploid selfing in S. sclerotiorum. Frequent outcrossing facilitates emergence and spread of new traits such as fungicide resistance, increasing difficulties in managing Sclerotinia diseases.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol

Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol | Plant pathogens and pests | Scoop.it
The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild-type and defined mutants: the DON-deficient Δtri5 mutant and the DON-producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, Δfgl1 and Δgpmk1. Hence, we tested for DON-induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity

Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity | Plant pathogens and pests | Scoop.it

The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) (109KFTMHNQ117), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif (397IYFL400) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism

 

 

more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice

Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice | Plant pathogens and pests | Scoop.it
We identified the Magnaporthe oryzae avirulence effector AvrPi9 cognate to rice blast resistance gene Pi9 by comparative genomics of requisite strains derived from a sequential planting method.
AvrPi9 encodes a small secreted protein that appears to localize in the biotrophic interfacial complex and is translocated to the host cell during rice infection. AvrPi9 forms a tandem gene array with its paralogue proximal to centromeric region of chromosome 7. AvrPi9 is expressed highly at early stages during initiation of blast disease.
Virulent isolate strains contain Mg-SINE within the AvrPi9 coding sequence. Loss of AvrPi9 did not lead to any discernible defects during growth or pathogenesis in M. oryzae. This study reiterates the role of diverse transposable elements as off-switch agents in acquisition of gain-of-virulence in the rice blast fungus.
The prevalence of AvrPi9 correlates well with the avirulence pathotype in diverse blast isolates from the Philippines and China, thus supporting the broad-spectrum resistance conferred by Pi9 in different rice growing areas. Our results revealed that Pi9 and Piz-t at the Pi2/9 locus activate race specific resistance by recognizing sequence-unrelated AvrPi9 and AvrPiz-t genes, respectively.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Pyramiding of partial disease resistance genes has a predictable, but diminishing, benefit to efficacy

Pyramiding of partial disease resistance genes has a predictable, but diminishing, benefit to efficacy | Plant pathogens and pests | Scoop.it
Partial resistance genes often need to be ‘pyramided’ into a crop cultivar to obtain commercially acceptable levels of disease resistance. Analysis of data from four different wheat mapping populations, segregating for partial resistance to four contrasting foliar pathogens, showed a diminishing benefit to disease control from increasing the numbers of resistance loci in wheat lines. To test whether a general function could describe the efficacy benefit from pyramiding, a simple multiplicative survival model (MSM) was used to predict disease severities on mapping population lines carrying various combinations of two, three or four resistance loci. The effectiveness of each resistance locus was expressed as the disease severity in lines carrying resistance alleles at one locus, as a proportion of the severity in lines carrying no detectable resistance alleles. The predicted severity from any given combination of multiple resistance loci was calculated as the product of the proportional severities for the relevant single loci. A regression line fitted to transformed observed against predicted values explained 93% of the variation, with a slope and intercept not significantly different from 1 and 0, respectively. MSM may therefore provide a simple method to test contrasting types of partial resistance and search for synergistic combinations. The analysis suggests that diminishing returns are a general feature of partial resistance to foliar pathogens in wheat, a finding that is likely to apply to other crop pathosystems. Identifying and combining ever more QTL is likely to provide limited gains. The consequences of these findings for QTL analysis are described.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Pea aphid biotype performance on diverse Medicago host genotypes indicates highly specific virulence and resistance functions

Pea aphid biotype performance on diverse Medicago host genotypes indicates highly specific virulence and resistance functions | Plant pathogens and pests | Scoop.it
Aphid–plant interactions depend on genotypes of both organisms, which determine the two-way molecular exchange that leads to compatible or incompatible outcomes. The underlying genes are mostly unknown, making it difficult to predict likelihood of aphid success or host resistance, and hampering crop genetic improvement. Here we screened eight pea aphid clonal genotypes collected from diverse legume hosts, on a species-wide panel of Medicago truncatula (Mt) genotypes. Aphid virulence was measured by survival, fecundity and growth rate, together with scores for chlorosis and necrosis as host response indicators. Outcomes were highly dependent on the specific aphid–host genotype combinations. Only one Mt line was fully resistant against all clones. Aphid-induced host chlorosis and necrosis varied greatly, but correlated with resistance only in a few combinations. Bi-clustering analysis indicated that all aphid clones could be distinguished by their performance profiles across the host genotypes tested, with each clone being genetically differentiated and potentially representing a distinct biotype. Clones originating from Medicago sativa ranged from highly virulent to almost completely avirulent on both Medicago species, indicating that some were well adapted, whereas others were most likely migrants. Comparisons of closely related pairs of Australian Mt genotypes differing in aphid resistance revealed no enhanced resistance to European pea aphid clones. Based on the extensive variation in pea aphid adaptation even on unfamiliar hosts, most likely reflecting multiple biotype-specific gene-for-gene interactions, we conclude that robust defences require an arsenal of appropriate resistance genes.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration

A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration | Plant pathogens and pests | Scoop.it

We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.

more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites

Beyond Predation: The Zoophytophagous Predator  Macrolophus pygmaeus  Induces Tomato Resistance against Spider Mites | Plant pathogens and pests | Scoop.it
Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

Microbiology: Fungus against the wall : Nature : Nature Publishing Group

A compound derived from plant cell-wall material that is a waste product of biofuel manufacture has been found to have fungicidal properties: it interacts with a carbohydrate called β1,3 glucan, thus compromising the integrity of fungal cells.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans

High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans | Plant pathogens and pests | Scoop.it
Main conclusion
The characterization and compare expression profiling of the miRNA transcriptome lay a solid foundation for unraveling the complex miRNA-mediated regulatory network in tomato resistance mechanisms against LB.
MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs with 20–24 nt. They have been identified in many plants with their diverse regulatory roles in biotic stresses. The knowledge, that miRNAs regulate late blight (LB), caused by Phytophthora infestans, is rather limited. In this study, we used miRNA-Seq to investigate the miRNA expression difference between the tomatoes treated with and without P. infestans. A total of 42,714,516 raw reads were generated from two small RNA libraries by high-throughput sequencing. Finally, 207 known miRNAs and 67 new miRNAs were obtained. The differential expression profile of miRNAs in tomato was further analyzed with twofold change (P value ≤0.01). A total of 70 miRNAs were manifested to change significantly in samples treated with P. infestans, including 50 down-regulated miRNAs and 20 up-regulated miRNAs. Moreover, a total of 73 target genes were acquired for 28 differentially expressed miRNAs by psRNATarget analysis. By enrichment pathway analysis of target genes, plant–pathogen interaction was the most highly relevant pathway which played an important role in disease defense. In addition, 30 miRNAs were selected for qRT-PCR to validate their expression patterns. The expression patterns for targets of miR6027, miR5300, miR476b, miR159a, miR164a and miRn13 were selectively examined, and the results showed that there was a negative correlation on the expression patterns between miRNAs and their targets. The targets have previously been reported to be related with plant immune and involved in plant–pathogen interaction pathway in this study, suggesting these miRNAs might act as regulators in process of tomato resistance against P. infestans. These discoveries will provide us useful information to explain tomato resistance mechanisms against LB.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence

The Amino Acid Arginine 210 of the Response Regulator HrpG of  Xanthomonas citri  subsp.  citri  Is Required for HrpG Function in Virulence | Plant pathogens and pests | Scoop.it
Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family’s response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction.
more...
No comment yet.
Scooped by Christophe Jacquet
Scoop.it!

'Silver bullet' kills phytophthora, a fungus that affects more than 400 plants and trees

'Silver bullet' kills phytophthora, a fungus that affects more than 400 plants and trees | Plant pathogens and pests | Scoop.it
Deep in the soil, underneath your pretty trees, shrubs, plants and vegetables, lurks a fungus lethal to all of them. But University of Florida plant pathologist G. Shad Ali has a tiny silver bullet to kill it.

Ali and a team of researchers with UF's Institute of Food and Agricultural Sciences, along with the University of Central Florida and the New Jersey Institute of Technology, have found that silver nanoparticles produced with an extract of wormwood, can stop several strains of the fungus phytophthora dead in its tracks.

Phytophthora attacks the leaves and roots of more than 400 plants and tree varieties -- everything from tomato plants to oak trees -- threatening the Florida's $15 billion-a-year ornamental horticulture industry.

"The silver nanoparticles are extremely effective in eliminating the fungus in all stages of its life cycle," Ali said. "In addition, it had no adverse effects on plant growth."

Wormwood is an herb naturally found in the foothills of Himalayas in the Indian subcontinent and is known to have strong antioxidant properties.

Ali said the silver-wormwood nanoparticles can be used as economical and eco-friendly alternatives to chemical pesticides. The silver nanoparticles measure 5 to 100 nanometers in diameter (20 nanometers is about the thickness of a cell wall) and are sprayed onto a plant. They then shield the plant from the fungus.

Silver nanoparticles are currently being investigated for applications in various industries, including medicine, diagnostics, cosmetics and food processing. They are already used in wound dressings, food packaging and in consumer products like textiles and footwear for fighting odor-causing microorganisms.

Since the silver nanoparticles display multiple ways of inhibiting fungus growth, the chances of pathogens developing resistance to them are minimized, Ali said. Because of that, they may be used for controlling fungicide- resistant plant pathogens more effectively.

Worldwide crop losses due to phytophthora fungus diseases are estimated to be in the multibillion dollar range, among them $6.7 billion in losses in potato crops due to late blight (which caused the Irish Potato Famine between 1845 and 1852 when more than one million people died) and $1 billion to $2 billion in soybean loss.

Other members of the research team were: Mohammad Ali, David Norman and Mary Brennan with the University of Florida's Plant Pathology-Mid Florida Research and Education Center; Bosung Kim with the University of Central Florida's chemistry department, Kevin Belfield with the College of Science and Liberal Arts at the New Jersey Institute of Technology and the University of Central Florida's chemistry department.

The team's work was published this month in the journal Phytopathology. They now hope to develop these nanoparticles into a commercial product for use in controlling phytophthora diseases in plants.
more...
No comment yet.