Emerging Research...
Follow
Find
13.7K views | +3 today
 
Rescooped by Jennifer Mach from Plants and Microbes
onto Emerging Research in Plant Cell Biology
Scoop.it!

PLOS Pathogens: A Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture (2013)

PLOS Pathogens: A Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture (2013) | Emerging Research in Plant Cell Biology | Scoop.it

Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoriaexhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity.


Via Kamoun Lab @ TSL
more...
No comment yet.
Emerging Research in Plant Cell Biology
A science editor's take on what's new and interesting in the plant kingdom.
Curated by Jennifer Mach
Your new post is loading...
Your new post is loading...
Rescooped by Jennifer Mach from Plant Gene Seeker -PGS
Scoop.it!

The Plant Cell Reviews Dynamic Aspects of Plant Hormone Signaling and Crosstalk

The Plant Cell Reviews Dynamic Aspects of Plant Hormone Signaling and Crosstalk | Emerging Research in Plant Cell Biology | Scoop.it

The Roles of ROS and ABA in Systemic Acquired Acclimation

Ron Mittler and Eduardo Blumwald

Plant Cell 2015 tpc.114.133090; First Published on January 20, 2015; doi:10.1105/tpc.114.133090 OPEN

http://www.plantcell.org/content/early/2015/01/20/tpc.114.133090.abstract

 

SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development

Mohammad Salehin, Rammyani Bagchi, and Mark Estelle

Plant Cell 2015 tpc.114.133744; First Published on January 20, 2015; doi:10.1105/tpc.114.133744

http://www.plantcell.org/content/early/2015/01/20/tpc.114.133744.abstract

 

The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response

Tom J. Guilfoyle

Plant Cell 2015 tpc.114.132753; First Published on January 20, 2015; doi:10.1105/tpc.114.132753 OPEN

http://www.plantcell.org/content/early/2015/01/20/tpc.114.132753.abstract

 

PIN-Dependent Auxin Transport: Action, Regulation, and Evolution

Maciek Adamowski and Jiří Friml

Plant Cell 2015 tpc.114.134874; First Published on January 20, 2015; doi:10.1105/tpc.114.134874

http://www.plantcell.org/content/early/2015/01/20/tpc.114.134874.abstract

 

The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development

G. Eric Schaller, Anthony Bishopp, and Joseph J. Kieber

Plant Cell 2015 tpc.114.133595; First Published on January 20, 2015; doi:10.1105/tpc.114.133595

http://www.plantcell.org/content/early/2015/01/20/tpc.114.133595.abstract


Via Mary Williams, Christophe Jacquet, Andres Zurita
more...
No comment yet.
Rescooped by Jennifer Mach from Plant roots and rhizosphere
Scoop.it!

Shoot and root branch growth angle control—the wonderfulness of lateralness

Shoot and root branch growth angle control—the wonderfulness of lateralness | Emerging Research in Plant Cell Biology | Scoop.it

Highlights

Gravitropic setpoint angles are growth angles that are maintained relative to gravity.
Non-vertical branch growth is an important adaptive trait that is poorly understood.
Auxin is central to the gravity-dependent, non-vertical growth of lateral branches.
Non-vertical GSAs arise via balancing gravitropic and antigravitropic components.

The overall shape of plants, the space they occupy above and below ground, is determined principally by the number, length, and angle of their lateral branches. The function of these shoot and root branches is to hold leaves and other organs to the sun, and below ground, to provide anchorage and facilitate the uptake of water and nutrients. While in some respects lateral roots and shoots can be considered mere iterations of the primary root-shoot axis, in others there are fundamental differences in their biology, perhaps most conspicuously in the regulation their angle of growth. Here we discuss recent advances in the understanding of the control of branch growth angle, one of the most important but least understood components of the wonderful diversity of plant form observed throughout nature.


Via Christophe Jacquet
more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Optimizing pyramided transgenic Bt crops for sustainable pest management

Optimizing pyramided transgenic Bt crops for sustainable pest management | Emerging Research in Plant Cell Biology | Scoop.it

Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

  
more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Planetary boundaries: Guiding human development on a changing planet

Planetary boundaries: Guiding human development on a changing planet | Emerging Research in Plant Cell Biology | Scoop.it

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth System into a new state should they be substantially and persistently transgressed.

more...
No comment yet.
Rescooped by Jennifer Mach from Plant Pathogenomics
Scoop.it!

Genome Biology and Evolution: The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal gene transfer (...

Genome Biology and Evolution: The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal gene transfer (... | Emerging Research in Plant Cell Biology | Scoop.it

Saprotrophic and parasitic microorganisms secrete proteins into the environment to breakdown macromolecules and obtain nutrients. The molecules secreted are collectively termed the ‘secretome’ and the composition and function of this set of proteins varies depending on the ecology, life cycle, and environment of an organism. Beyond the function of nutrient acquisition, parasitic lineages must also secrete molecules to counteract host defenses. Here we use a combination of de-novo genome and transcriptome sequencing and bioinformatic identification of signal peptides to identify the putative secreted proteome of two oomycetes, the facultative parasite Achlya hypogyna and free-living Thraustotheca clavata. By comparing the secretomes of these saprolegnialean oomycetes with that of 8 other oomycetes, we were able to characterize the evolution of this protein set across the oomycete clade. These species span the last common ancestor of the two major oomycete families allowing us to identify the ancestral secretome. This ancestral secretome consists of at least 84 gene families that encode putatively secreted proteins. Only 11 of these gene families are conserved across all 10 secretomes analysed and the two major branches in the oomycete radiation. Notably, we have identified expressed elicitin-like effector genes in the saprotrophic decomposer, T. clavata. Phylogenetic analyses show six novel HGTs to the oomycete secretome from bacterial and fungal donor lineages, four of which are specific to the Saprolegnialeans. Comparisons between free-living and pathogenic taxa highlight the functional changes of oomycete secretomes associated with shifts in lifestyle.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Efficient high light acclimation involves rapid processes at multiple mechanistic levels

Efficient high light acclimation involves rapid processes at multiple mechanistic levels | Emerging Research in Plant Cell Biology | Scoop.it

Like no other chemical or physical parameter, the natural light environment of plants changes with high speed and jumps of enormous intensity. To cope with this variability, photosynthetic organisms have evolved sensing and response mechanisms that allow efficient acclimation. Most signals originate from the chloroplast itself. In addition to very fast photochemical regulation, intensive molecular communication is realized within the photosynthesizing cell, optimizing the acclimation process. Current research has opened up new perspectives on plausible but mostly unexpected complexity in signalling events, crosstalk, and process adjustments. Within seconds and minutes, redox states, levels of reactive oxygen species, metabolites, and hormones change and transmit information to the cytosol, modifying metabolic activity, gene expression, translation activity, and alternative splicing events. Signalling pathways on an intermediate time scale of several minutes to a few hours pave the way for long-term acclimation. Thereby, a new steady state of the transcriptome, proteome, and metabolism is realized within rather short time periods irrespective of the previous acclimation history to shade or sun conditions. This review provides a time line of events during six hours in the ‘stressful’ life of a plant.

Jennifer Mach's insight:

Great opening sentence in the abstract.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense | Emerging Research in Plant Cell Biology | Scoop.it

Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

more...
No comment yet.
Rescooped by Jennifer Mach from Plant Gene Seeker -PGS
Scoop.it!

Identification of the transporter responsible for sucrose accumulation in sugar beet taproots

Identification of the transporter responsible for sucrose accumulation in sugar beet taproots | Emerging Research in Plant Cell Biology | Scoop.it
Nature Plants, Published online: 8 January 2015; | doi:10.1038/nplants.2014.1

 

Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins ‘tonoplast sugar transporters’. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.

Reactions (3)
Via Andres Zurita
more...
Andres Zurita's curator insight, January 8, 7:36 AM

Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins ‘tonoplast sugar transporters’. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.

Scooped by Jennifer Mach
Scoop.it!

Current Issue : Nature Plants

Current Issue : Nature Plants | Emerging Research in Plant Cell Biology | Scoop.it
Nature Plants is a scientific journal publishing primary research papers concerned with all aspects of plant biology, technology, ecology and evolution.
Jennifer Mach's insight:

Congratulations to Nature Plants on their excellent first issue!

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Investigation of terpene diversification across multiple sequenced plant genomes

Investigation of terpene diversification across multiple sequenced plant genomes | Emerging Research in Plant Cell Biology | Scoop.it

Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) “signature” enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Understanding the Biochemical Basis of Temperature-Induced Lipid Pathway Adjustments in Plants

Understanding the Biochemical Basis of Temperature-Induced Lipid Pathway Adjustments in Plants | Emerging Research in Plant Cell Biology | Scoop.it

Glycerolipid biosynthesis in plants proceeds through two major pathways compartmentalized in the chloroplast and the endoplasmic reticulum (ER). The involvement of glycerolipid pathway interactions in modulating membrane desaturation under temperature stress has been suggested but not fully explored. We profiled glycerolipid changes as well as transcript dynamics under suboptimal temperature conditions in three plant species that are distinctively different in the mode of lipid pathway interactions. In Arabidopsis thaliana, a 16:3 plant, the chloroplast pathway is upregulated in response to low temperature, whereas high temperature promotes the eukaryotic pathway. Operating under a similar mechanistic framework, Atriplex lentiformis at high temperature drastically increases the contribution of the eukaryotic pathway and correspondingly suppresses the prokaryotic pathway, resulting in the switch of lipid profile from 16:3 to 18:3. In wheat (Triticum aestivum), an 18:3 plant, low temperature also influences the channeling of glycerolipids from the ER to chloroplast. Evidence of differential trafficking of diacylglycerol moieties from the ER to chloroplast was uncovered in three plant species as another layer of metabolic adaptation under temperature stress. We propose a model that highlights the predominance and prevalence of lipid pathway interactions in temperature-induced lipid compositional changes.

more...
No comment yet.
Rescooped by Jennifer Mach from Trends in MPMI
Scoop.it!

A Ralstonia solanacearum Type III Effector Directs the Production of the Plant Signal Metabolite Trehalose-6-Phosphate

A Ralstonia solanacearum Type III Effector Directs the Production of the Plant Signal Metabolite Trehalose-6-Phosphate | Emerging Research in Plant Cell Biology | Scoop.it
The plant pathogen Ralstonia solanacearum possesses two genes encoding a trehalose-6-phosphate synthase (TPS), an enzyme of the trehalose biosynthetic pathway. One of these genes, named ripTPS, was found to encode a protein with an additional N-terminal domain which directs its translocation into host plant cells through the type 3 secretion system. RipTPS is a conserved effector in the R. solanacearum species complex, and homologues were also detected in other bacterial plant pathogens. Functional analysis of RipTPS demonstrated that this type 3 effector synthesizes trehalose-6-phosphate and identified residues essential for this enzymatic activity. Although trehalose-6-phosphate is a key signal molecule in plants that regulates sugar status and carbon assimilation, the disruption of ripTPS did not alter the virulence of R. solanacearum on plants. However, heterologous expression assays showed that this effector specifically elicits a hypersensitive-like response on tobacco that is independent of its enzymatic activity and is triggered by the C-terminal half of the protein. Recognition of this effector by the plant immune system is suggestive of a role during the infectious process.

Via Suayib Üstün, Jennifer Mach, CP
more...
No comment yet.
Rescooped by Jennifer Mach from Plant evolution
Scoop.it!

Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae

Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae | Emerging Research in Plant Cell Biology | Scoop.it

MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and A. lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrataand C. rubella. We document a surprising extent of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences.


Via Pierre-Marc Delaux
more...
No comment yet.
Rescooped by Jennifer Mach from Plant-Microbe Symbioses
Scoop.it!

Soybean kinome: functional classification and gene expression patterns

Soybean kinome: functional classification and gene expression patterns | Emerging Research in Plant Cell Biology | Scoop.it
The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean.

Via Jean-Michel Ané
more...
Rescooped by Jennifer Mach from Plant evolution
Scoop.it!

Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens

The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MTdynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants.


Via Pierre-Marc Delaux
more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Which biotech foods are most acceptable to the public?

Which biotech foods are most acceptable to the public? | Emerging Research in Plant Cell Biology | Scoop.it

New discoveries are prompting questions about which types of genetically engineered foods and applications are likely to be most accepted by the public. Results of a survey of over 1000 US consumers reveals that people prefer eating beef to eating corn or apples if the foods are not genetically engineered, but exactly the opposite is true if the foods are genetically engineered. Eating fresh food is preferred to processed, but much less so if both food types are genetically engineered. Desirability of genetic engineering depends on the reason for the biotechnology application.

Questions about public acceptance of agricultural biotechnology have been reignited by recent events and scientific progress. Results from a nationwide survey revealed that consumers assign larger “genetically engineered discounts” to fresh than processed foods and to meats than fruits or cereal grains. Consumers considered the motivations for adoption of genetic engineered foods desirable, in particular motivations related to protection of US origin, lower prices, and higher nutritional content. Genetically engineered foods that are processed that provide direct benefits to consumers, like improved nutritional content, are likely to be most acceptable to the public, particularly if benefits related to price-impacts and national competitiveness are understood by the public.

more...
No comment yet.
Rescooped by Jennifer Mach from MycorWeb Plant-Microbe Interactions
Scoop.it!

Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’?

Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? | Emerging Research in Plant Cell Biology | Scoop.it
Plants rely on their associated microbiota for crucial physiological activities; realization of this interaction drives research to understand inter-domain communication. This opinion article focuses on the arbuscular mycorrhizal (AM) symbiosis, which involves the Glomeromycota, fungi that can form a symbiosis with most plants. Here we propose the hypothesis that the molecules involved in inter-kingdom symbiotic signaling, such as strigolactones, cutin monomers, and chitin-related molecules, also have key roles in development, originally unrelated to symbiosis. Thus, the symbiotic role of these molecules relies on the co-evolved capacity of the AM partners to perceive and interpret them as symbiotic signals.

Via Francis Martin
more...
No comment yet.
Rescooped by Jennifer Mach from MycorWeb Plant-Microbe Interactions
Scoop.it!

Up-regulation of genes involved in N -acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi

Up-regulation of genes involved in N -acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi | Emerging Research in Plant Cell Biology | Scoop.it

Arbuscular mycorrhizal (AM) fungi colonize roots and form two kinds of mycelium, intraradical mycelium (IRM) and extraradical mycelium (ERM). Arbuscules are characteristic IRM structures that highly branch within host cells in order to mediate resource exchange between the symbionts. They are ephemeral structures and at the end of their life span, arbuscular branches collapse from the tip, fungal cytoplasm withdraws, and the whole arbuscule shrinks into fungal clumps. The exoskeleton of an arbuscule contains structured chitin, which is a polymer of N-acetylglucosamine (GlcNAc), whereas a collapsed arbuscule does not. The molecular mechanisms underlying the turnover of chitin in AM fungi remain unknown. Here, a GlcNAc transporter, RiNGT, was identified from the AM fungus Rhizophagus irregularis. Yeast mutants defective in endogenous GlcNAc uptake and expressing RiNGT took up 14C-GlcNAc, and the optimum uptake was at acidic pH values (pH 4.0–4.5). The transcript levels of RiNGT in IRM in mycorrhizal Lotus japonicus roots were over 1000 times higher than those in ERM. GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) genes, which are related to the GlcNAc catabolism pathway, were also induced in IRM. Altogether, data suggest the existence of an enhanced recycling mode of GlcNAc in IRM of AM fungi.


Via Francis Martin
more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Engineering the plant rhizosphere

Engineering the plant rhizosphere | Emerging Research in Plant Cell Biology | Scoop.it

Plant natural products are low molecular weight compounds playing important roles in plant survival under biotic and abiotic stresses. In the rhizosphere, several groups of plant natural products function as semiochemicals that mediate the interactions of plants with other plants, animals and microorganisms. The knowledge on the biosynthesis and transport of these signaling molecules is increasing fast. This enables us to consider to optimize plant performance by changing the production of these signaling molecules or their exudation into the rhizosphere. Here we discuss recent advances in the understanding and metabolic engineering of these rhizosphere semiochemicals.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Floral pigmentation patterns provide an example of Gloger's rule in plants

Floral pigmentation patterns provide an example of Gloger's rule in plants | Emerging Research in Plant Cell Biology | Scoop.it

Ecogeographic rules explain spatial trends in biodiversity, species interactions and phenotypes1. Gloger's rule and its corollaries state that pigmentation of endothermic animals will increase from more polar to equatorial regions due to changing selective pressures including heat, humidity, predation and UV irradiance2,3,4. In plants, floral pigmentation varies within and among taxa, yet causes of wide-scale geographic variation are lacking. We show that Gloger's rule explains patterns of variation in UV-absorbing floral pigmentation in a widespread plant, Argentina anserina(Rosaceae). Specifically, the floral pigmentation pattern unique to the UV spectrum (UV ‘bullseye’) increases with proximity to the Equator in both hemispheres, and larger bullseyes are associated with higher UVB incidence. Experiments confirm UV as an agent of selection and bullseye size as a target. Results extend the generality of an ecogeographic rule—formulated for animals—to plants, implicating UV as a selective agent on a floral trait generally assumed to enhance plant–pollinator interactions. Global change is expected to alter UV irradiance in terrestrial systems5, potentially intensifying the importance of UV-mediated selection to floral evolution. Because floral UV reflectance and pattern enhance pollinator attraction6,7, altered selective regimes could disrupt coevolved plant–pollinator interactions, weakening an important ecosystem service8.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism

Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism | Emerging Research in Plant Cell Biology | Scoop.it

The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Insights into the origin and evolution of plant hormone signaling machinery

Insights into the origin and evolution of plant hormone signaling machinery | Emerging Research in Plant Cell Biology | Scoop.it

Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone [abscisic acid (ABA), auxin (AUX), brassinosteroid (BR), cytokinin (CK), ethylene (ETH), gibberellin (GA), jasmonate (JA), salicylic acid (SA), and strigolactone (SL)] signaling pathways. Our multi-species genome-wide analysis reveals: i) AUX, CK and SL signaling pathways originated in charophyte lineages; ii) ABA, JA, and SA signaling pathways arose in the last common ancestor of land plants; iii) the GA signaling evolved after the divergence of bryophytes from land plants; iv) the canonical BR signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; v) the origin of the canonical ETH signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity

Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity | Emerging Research in Plant Cell Biology | Scoop.it

The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.

more...
No comment yet.
Scooped by Jennifer Mach
Scoop.it!

Enabling plant synthetic biology through genome engineering

Enabling plant synthetic biology through genome engineering | Emerging Research in Plant Cell Biology | Scoop.it
•Rewriting genomes will play an important role in plant synthetic biology.•Sequence-specific nucleases enable almost any DNA sequence change in plant cells.•The advantages and limitations of current sequence-specific nucleases are discussed.•A comprehensive list of recent plant genome engineering achievements is provided.•Achievements in genome engineering are related to plant synthetic biology projects.

 

Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code – enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology.

more...
No comment yet.
Rescooped by Jennifer Mach from Plant evolution
Scoop.it!

Characterization of two CENH3 genes and their roles in wheat evolution

Characterization of two CENH3 genes and their roles in wheat evolution | Emerging Research in Plant Cell Biology | Scoop.it

Wheat evolution is complex as a result of successive rounds of allopolyploidization and continuous selection during domestication.Diploid and tetraploid wheat species (Triticum spp.) were used as model systems in which to study the role of centromere-specific histone H3 variant (CENH3) in wheat evolution.We characterized two types of CENH3 genes, named αCENH3 and βCENH3, each of which has three slightly different copies derived from the AA, BB and DD genomes. Specific antibodies were raised against the two CENH3 proteins and were co-localized to centromeres with subtle differences. In most tetraploid wheat species, CENH3 genes are more highly expressed from the AA genome. In wild tetraploids, βCENH3 has a much lower expression level than αCENH3, while in cultivated tetraploids βCENH3 transcripts are enhanced to near αCENH3 levels. Comparison of the CENH3 proteins in wild and cultivated tetraploids revealed that the histone folding domain (HFD) of only βCENH3 is under positive selection, especially in the region responsible for targeting of CENH3 to the centromere.Taken together, positive selection of βCENH3 and its increased expression in tetraploid cultivars are indicative of adaptive evolution. Furthermore, the differences in localization between αCENH3 and βCENH3 observed using fiber fluorescence in situ hybridization (FISH) and immunodetection and in developmental phenotypes resulting from virus-reduced gene silencing imply their functional diversification during wheat evolution.


Via Pierre-Marc Delaux
more...
No comment yet.