Effectors and Pla...
Follow
Find
34.6K views | +8 today
 
Rescooped by Nicolas Denancé from Plants and Microbes
onto Effectors and Plant Immunity
Scoop.it!

Current Biology: Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted (2012)

Current Biology: Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted (2012) | Effectors and Plant Immunity | Scoop.it

Mycorrhizal root endosymbiosis is an ancient property of land plants. Two parallel studies now provide novel insight into the mechanism driving this interaction and how it is used by other filamentous microbes like pathogenic oomycetes.

 

René Geurts and Vivianne G.A.A. Vleeshouwers


Via Kamoun Lab @ TSL
more...
No comment yet.
Effectors and Plant Immunity
Strategies of plant defense and microbe attacks
Your new post is loading...
Your new post is loading...
Scooped by Nicolas Denancé
Scoop.it!

Front. Plant Sci./Front. Microbiol.: Genomics and Effectomics of the crop killer Xanthomonas

Front. Plant Sci./Front. Microbiol.: Genomics and Effectomics of the crop killer Xanthomonas | Effectors and Plant Immunity | Scoop.it

Phytopathogenic bacteria of the Xanthomonas genus cause severe diseases on hundreds host plants, including economically important crops, such as rice, wheat, cassava, banana, mango, tomato, citrus, cabbage, pepper, bean and cotton. Diseases occurring in nature comprise black rot, leaf/fruit spot, canker, wilt, leaf blight and streak. These bacteria are present worldwide where some phytopathogenic strains are emergent or re-emergent and, consequently, dramatically impact agriculture, economy and food safety.

Xanthomonas bacteria provide excellent models for genomic studies and hundreds of Xanthomonas genome sequences have been obtained since 2002 and many other are underway (www.xanthomonas.org/genomes.html). Comparative genomics between and/or within bacterial species and/or pathovars will be of a great help to decipher commonalities and particularities that underly host range definition.

Most of the Xanthomonas possesses a type III secretion system (T3SS) that is required for injection of various effectors inside plant cells, thus contributing to pathogenicity. Transcription Activator-Like (tal) genes, encode bacterial transcription factors which are injected through the T3SS by many Xanthomonas to promote pathogenicity. Some Ralstonia, Bulkholderia and marine bacteria also express TAL-like proteins which function and mode of action is starting to be deciphered. TALs are addressed to the plant nucleus where they activate plant gene expression by direct binding to the corresponding promoter sequences. Targeted genes essentially act as susceptibility genes. A few years after the cracking of the code allowing the TAL/Host promoter sequence recognition, combined to the ever-growing availability of plant genomes, many efforts have been done to identify TAL targets. These data collected for many Xanthomonas/host pathosystems will assuredly help breeders to breed resistance resistant in important crops.

In this Research Topic we aim to collect manuscripts covering the current knowledge of Xanthomonas genomics and effectomics, with a special focus on TAL effector biology. Specifically, we encourage the submission of manuscripts (Original Research, Hypothesis & Theory, Methods, Reviews, Mini Reviews, Perspective and Opinion) covering the following topics:
1. Manuscripts reporting genome sequencing of Xanthomonas strains.
2. Manuscripts describing functional and comparative genomics in Xanthomonas species/pathovars.
3. Manuscripts describing functional studies on Xanthomonas type III effectors.
3. Manuscripts describing discovery, evolution, bio-informatics and functional genomics of TAL effectors and their targets in plant genomes, as well as for TAL-like in non-Xanthomonas bacteria.
4. Manuscripts describing applications of TAL effector research for resistance breeding in crops.

We anticipate that this Research Topic will be of importance for plant pathologists and breeders.

 

Nicolas Denancé
Guest Associate Editor, Plant-Microbe Interaction
www.frontiersin.org

Nicolas Denancé's insight:

Published articles:

 

1. Mini-review by S. Üstün and F. Börnke: Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front. Plant Sci. (2014)

more...
Suayib Üstün's curator insight, July 29, 2:57 PM

Great topic-excited!

Rescooped by Nicolas Denancé from TAL effector science
Scoop.it!

A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets - Sci. Reports

A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets - Sci. Reports | Effectors and Plant Immunity | Scoop.it

(via T. Schreiber, thx)

Zhang et al, 2014

Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.


Via dromius
more...
SRB's curator insight, December 12, 4:27 PM

PMID: 25475013 

Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

New Phytologist: Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen (2014)

New Phytologist: Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen (2014) | Effectors and Plant Immunity | Scoop.it

Understanding how plants balance between enabling microbial symbionts and fending off pathogens has direct implications both for basic plant biology and optimal use of crop plants in agriculture. The degree to which the processes associated with these two types of interactions overlap is poorly known. Recent studies revealed that symbiotic and pathogenic filamentous microbes require common plant genetic elements to establish colonization (Wang et al., 2012; Rey et al., 2013), supporting the long-held view that plants have evolved the ability to accommodate microbes (Parniske, 2000) and that pathogens have exploited these pathways. However, the extent to which plant genes implicated in fungal or bacterial symbioses are involved in interactions with biotrophic pathogens is unknown and research has been hampered by the lack of suitable common host experimental systems.


In this study, we took advantage of a newly established quantitative Phytophthora palmivora–Medicago truncatula system to assess the extent to which mutants perturbed in colonization by arbuscular mycorrhiza fungi (AM fungi) and/or bacterial root nodule symbiosis are affected in the early/biotrophic stages of oomycete pathogenesis (Supporting Information Table S1). We devised and implemented a high throughput seedling infection assay and applied it to 19 M. truncatula lines mutated in 14 genes (for details see Methods S1; for explanation of gene abbreviations see Table S1). We measured both the overall root length and disease development, then plotted them as a ratio (Figs 1a,c, S1; Table S2). Of the 14 genes tested, seven (nine alleles) showed an altered response to P. palmivora inoculation compared with the wild-type Jemalong A17. Mutants in RAM2 and NIP/LATD showed enhanced resistance whereas mutants in five genes, NFP, LYK3, ERN, EFD, and LIN, all of which are impaired in the interaction with nitrogen fixing rhizobia displayed enhanced susceptibility. Expression levels of two defence response genes in M. truncatula mutants with altered disease symptoms were not overall significantly different from levels observed during infection of wild-type A17 seedlings (Fig. S2). This suggests that observed differences in disease extent are not attributable to altered defence responses in these mutants. These findings reveal a significant overlap between processes that define symbiosis and disease in M. truncatula roots. However, the remaining M. truncatula mutants unaltered in P. palmivora disease development include the common symbiotic signalling pathway (CSSP) mutants dmi1, dmi2 and dmi3, suggesting that the CSSP is not a major modulator of susceptibility to P. palmivora in M. truncatula.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Nicolas Denancé from MycorWeb Plant-Microbe Interactions
Scoop.it!

The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling

The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling | Effectors and Plant Immunity | Scoop.it
Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.

Via Francis Martin
more...
No comment yet.
Rescooped by Nicolas Denancé from microbial pathogenesis and plant immunity
Scoop.it!

MPMI: Functional analysis of plant defense suppression and activation by the Xanthomonas core type III effector XopX

MPMI: Functional analysis of plant defense suppression and activation by the Xanthomonas core type III effector XopX | Effectors and Plant Immunity | Scoop.it

Many phytopathogenic type III secretion effectors (T3Es) have been shown to target and suppress plant immune signaling, but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a “core” Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria (Xe) infection of tomato, but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during Xe infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of Xe-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX co-expression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during Xe-tomato interactions, suggesting that XopX’s primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.


Via Jim Alfano
more...
No comment yet.
Rescooped by Nicolas Denancé from Plant evolution
Scoop.it!

Loss and retention of resistance genes in five species of the Brassicaceae family

Loss and retention of resistance genes in five species of the Brassicaceae family | Effectors and Plant Immunity | Scoop.it

Plants have evolved disease resistance (R) genes encoding for nucleotide-binding site (NB) and leucine-rich repeat (LRR) proteins with N-terminals represented by either Toll/Interleukin-1 receptor (TIR) or coiled-coil (CC) domains. Here, a genome-wide study of presence and diversification of CC-NB-LRR and TIR-NB-LRR encoding genes, and shorter domain combinations in 19 Arabidopsis thaliana accessions and Arabidopsis lyrata, Capsella rubella, Brassica rapa and Eutrema salsugineum are presented.ResultsOut of 528 R genes analyzed, 12 CC-NB-LRR and 17 TIR-NB-LRR genes were conserved among the 19 A. thaliana genotypes, while only two CC-NB-LRRs, including ZAR1, and three TIR-NB-LRRs were conserved when comparing the five species. The RESISTANCE TO LEPTOSPHAERIA MACULANS 1 (RLM1) locus confers resistance to the Brassica pathogen L. maculans the causal agent of blackleg disease and has undergone conservation and diversification events particularly in B. rapa. On the contrary, the RLM3 locus important in the immune response towards Botrytis cinerea and Alternaria spp. has recently evolved in the Arabidopsis genus.ConclusionOur genome-wide analysis of the R gene repertoire revealed a large sequence variation in the 23 cruciferous genomes. The data provides further insights into evolutionary processes impacting this important gene family.


Via Christophe Jacquet, Kamoun Lab @ TSL, Pierre-Marc Delaux
more...
No comment yet.
Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

Frontiers in Plant-Microbe Interaction | Research Topics: Plant Immunity: From model systems to crops species (2014)

Frontiers in Plant-Microbe Interaction | Research Topics: Plant Immunity: From model systems to crops species (2014) | Effectors and Plant Immunity | Scoop.it

Plants posses an intricate innate immune system that enables them to fight off most invading pathogens. Around the world, agriculture relies on robust disease resistance to ensure adequate food and feed production. Researchers and breeders are constantly generating new resistant crop varieties mostly employing the lengthy process of conventional breeding. Nonetheless, crop losses due to plant pathogens are estimated to be over 15% every year - the main cause of such losses is rapid evolution of new virulent races. In order to keep up with emerging pathogens, we need to gain a deeper and more systematic understanding of the immune system of our crops. During the past two decades, molecular understanding of plant innate immune signaling has been greatly expanded using dicotyledonous model systems such as Arabidopsis thaliana. Now, it is time to connect this volume of knowledge with the immune system of the crop species.

 

In this Research Topic we aim to collect manuscripts covering the current knowledge of the immune systems of major crop species. Specifically, we encourage the submission of manuscripts (Original Research, Hypothesis & Theory, Methods, Reviews, Mini Reviews, Perspective and Opinion) covering the following topics:

 

a. Manuscripts describing our current understanding of the plant immune system with a focus on crop species or comparative analyses between model systems and crops.

b. Manuscripts exploring how to best exploit our insight into genomes of plant pathogens and molecular understanding of effector function.
c. Manuscripts debating (novel) strategies of how to generate more resistant crop varieties. These might include biotechnological, social and economical aspects of crop improvement.

 

We anticipate that this Research Topic will become an important resource for plant immunologists especially those interested in comparative studies of plant innate immune systems of model systems and crop species.

 

Topic Editors

 

Benjamin Schwessinger
UC Davis
Davis, USA

 

Rebecca Bart
Donald Danforth Plant Science Center
St. Louis, USA

 

Gitta Coaker
University of California, Davis
Davis, USA

 

Ksenia V Krasileva
University of California Davis
Davis, USA


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

Frontiers: A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis (2014)

Frontiers: A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis (2014) | Effectors and Plant Immunity | Scoop.it

Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat (NLR) receptors. Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. However, many paired NLRs have now been identified where both proteins are required to confer resistance to pathogens. Recent detailed studies on the Arabidopsis thaliana TIR-NLR pair RRS1 and RPS4 and on the rice CC-NLR pair RGA4 and RGA5 have revealed for the first time how such protein pairs function together. In both cases, the paired partners interact physically to form a hetero-complex receptor in which each partner plays distinct roles in effector recognition or signaling activation, highlighting a conserved mode of action of NLR pairs across both monocotyledonous and dicotyledonous plants. We also discuss a new ‘integrated decoy’ effector recognition model to describe these receptor complexes that may be common to many other plant NLR pairs.


Via Kamoun Lab @ TSL
more...
Elsa Ballini's curator insight, October 29, 4:21 AM

In Rice/Magnaporthe an example is RGA4-RGA5

Rescooped by Nicolas Denancé from TAL effector science
Scoop.it!

Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900 - FEMS Microb. Letters

Harrison and Studholme, 2014

Xanthomonas axonopodis pathovar vasculorum strain NCPPB 900 was isolated from sugarcane on Reunion island in 1960. Consistent with its belonging to fatty acid type D, multi-locus sequence analysis confirmed that NCPPB 900 falls within the species X. axonopodis. This genome harbours sequences similar to plasmids pXCV183 from X. campestris pv. vesicatoria 85-10 and pPHB194 from Burkholderia pseudomallei. Its repertoire of predicted effectors includes homologues of XopAA, XopAD, XopAE, XopB, XopD, XopV, XopZ, XopC and XopI and transcriptional activator-like (TAL) effectors and it is predicted to encode a novel phosphonate natural product also encoded by the genome of the phylogenetically distant X. vasicola pv. vasculorum. Availability of this novel genome sequence may facilitate the study of interactions between xanthomonads and sugarcane, a host-pathogen system that appears to have evolved several times independently within the genus Xanthomonas and may also provide a source of target sequences for molecular detection and diagnostics.


Via dromius
more...
dromius's curator insight, October 2, 3:32 AM

This genome contains TAL effectors

Rescooped by Nicolas Denancé from Plant-microbe interaction
Scoop.it!

New Phytol. (2014): Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms.

New Phytol. (2014): Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. | Effectors and Plant Immunity | Scoop.it

Summary

Ca2+ is a ubiquitous second messenger for cellular signalling in various stresses and developmental processes. Here, we summarize current developments in the roles of Ca2+ during plant immunity responses. We discuss the early perception events preceding and necessary for triggering cellular Ca2+ fluxes, the potential Ca2+-permeable channels, the decoding of Ca2+ signals predominantly via Ca2+-dependent phosphorylation events and transcriptional reprogramming. To highlight the complexity of the cellular signal network, we briefly touch on the interplay between Ca2+-dependent signalling and selected major signalling mechanisms – with special emphasis on reactive oxygen species at local and systemic levels.


Via Suayib Üstün
more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

Nature Biotech.: Field trial of Xanthomonas wilt disease-resistant bananas in East Africa (2014)

Nature Biotech.: Field trial of Xanthomonas wilt disease-resistant bananas in East Africa (2014) | Effectors and Plant Immunity | Scoop.it

Banana is a major staple crop in East Africa produced mostly by smallholder subsistence farmers. More bananas are produced and consumed in East Africa than in any region of the world. Uganda is the world’s second foremost grower with a total annual production of about 10.5 million tons. The average daily per capita consumption in Uganda ranges from 0.61 to over 1.6 kg, one of the highest in the world. In this Correspondence, we report preliminary results from a confined field trial in Uganda of transgenic bananas resistant to the deadly banana Xanthomonas wilt disease.

 

Leena Tripathi, Jaindra Nath Tripathi, Andrew Kiggundu, Sam Korie, Frank Shotkoski & Wilberforce Kateera Tushemereirwe

more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

PLoS ONE: A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex (2014)

PLoS ONE: A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex (2014) | Effectors and Plant Immunity | Scoop.it

The Pseudomonas syringae complex is composed of numerous genetic lineages of strains from both agricultural and environmental habitats including habitats closely linked to the water cycle. The new insights from the discovery of this bacterial species in habitats outside of agricultural contexts per se have led to the revelation of a wide diversity of strains in this complex beyond what was known from agricultural contexts. Here, through Multi Locus Sequence Typing (MLST) of 216 strains, we identified 23 clades within 13 phylogroups among which the seven previously described P. syringae phylogroups were included. The phylogeny of the core genome of 29 strains representing nine phylogroups was similar to the phylogeny obtained with MLST thereby confirming the robustness of MLST-phylogroups. We show that phenotypic traits rarely provide a satisfactory means for classification of strains even if some combinations are highly probable in some phylogroups. We demonstrate that the citrate synthase (cts) housekeeping gene can accurately predict the phylogenetic affiliation for more than 97% of strains tested. We propose a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. Finally, our analysis leads to predictions about the diversity of P. syringae that is yet to be discovered. We present here an expandable framework mainly based on cts genetic analysis into which more diversity can be integrated.

 

Odile Berge, Caroline L. Monteil, Claudia Bartoli, Charlotte Chandeysson, Caroline Guilbaud

more...
No comment yet.
Rescooped by Nicolas Denancé from WU_Phyto-Publications
Scoop.it!

Trends in Plant Science (2014): Effector-triggered defence against apoplastic fungal pathogens

Trends in Plant Science (2014): Effector-triggered defence against apoplastic fungal pathogens | Effectors and Plant Immunity | Scoop.it

Breeding agricultural crops for resistance against pathogens is essential to secure global food production. Despite efforts to control crop diseases, pathogens are estimated to account for losses of 15% of global food production. It is suggested that losses would be almost twice as much without disease control measures, such as crop resistance breeding [1]. There are now opportunities to improve the effectiveness of breeding crops for resistance against damaging pathogens by exploiting new molecular and genetic insights to improve understanding of the defence system of crop plants against pathogens. In this opinion, we focus on the resistance of crops against foliar fungal pathogens that exploit the host apoplast for retrieval of nutrients. Some of these pathogens are globally widespread and of considerable economic importance. They include pathogens that penetrate the host leaf cuticle and then exploit a niche underneath it (e.g., Pyrenopeziza brassicae, oilseed rape light leaf spot; Venturia inaequalis, apple scab; and Rhynchosporium commune, barley leaf blotch, global losses of approximately US$3.5 billion per year). Others enter leaves through stomata, then grow between host mesophyll cells (e.g., Cladosporium fulvum, tomato leaf mould; Leptosphaeria maculans, oilseed rape phoma stem canker, global losses of approximately US$1 billion per year; and Zymoseptoria tritici, wheat septoria leaf blotch, with a global loss of approximately US$5 billion per year) (Table 1, Figure 1). These apoplastic pathogens are all ascomycetes and many of them are dothideomycetes [2].


Via WU_Phyto
more...
No comment yet.
Rescooped by Nicolas Denancé from Publications
Scoop.it!

Video: Fifi The Oomycete (2014)

Happy holidays from the @KamounLab!

 

FiFi (Phytophthora) The Oomycete


(adapted from Frosty The Snowman)

 

Fifi the oomycete is a scary parasite,
With flagellated spores and hyphal threads
She kills crops and triggers blight.

 

Fifi the oomycete is a heterokont, they say,
She’s fungus-like but the scientists
Know how she had plastids one day.

 

There must have been some magic in those
Transposons they found.
For when they mapped ‘em on the genome
They began to jump around.

 

Fifi the oomycete has a big genome, they say,
Full of repeats but don’t call it junk
‘cause can be handy one day.

 

O, Fifi the oomycete
Was as virulent as she’s been;
and scientists say she secretes her way
Inside potatoes and bean.

 

Fifi the oomycete found
A resistant plant that day,
So she said, "Let's run and
There’ll be no fun
Until I mutate away."

 

There must have been some magic in those
Transposons they found.
For when they mapped ‘em on the genome
They began to jump around.

 

For Fifi the oomycete
Keeps evolving in her way,
But don’t wave her goodbye,
Don't you even try,
She’ll be back again some day.

 


Via Kamoun Lab @ TSL
more...
Mary Williams's curator insight, December 10, 12:46 PM

She's adorable (or maybe not...). Nice song though!

Easwaramurthy Rgr's curator insight, December 19, 2:37 PM

Happy holidays from the @KamounLab!

 

FiFi (Phytophthora) The Oomycete


(adapted from Frosty The Snowman),scopped by Jean Michel

Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

36th New Phytologist Symposium: Cell biology at the plant–microbe interface, Munich, Germany 29 Nov – 1 Dec 2015

36th New Phytologist Symposium: Cell biology at the plant–microbe interface, Munich, Germany 29 Nov – 1 Dec 2015 | Effectors and Plant Immunity | Scoop.it

Symposium aim - We aim to organize a cutting edge meeting focused on the application of cell biology approaches to understand the mechanisms that diverse microbes use to manipulate plant cells to benefit their life styles. The meeting will bring together researchers working on a broad spectrum of microbes across different taxa (bacteria, fungi, oomycetes) that form a variety of different interactions (pathogenic, symbiotic) with plant organs/tissues (leaves, roots). With the explosion in microbial/host genome sequences and the identification of genes/proteins involved in these interactions, the focus of the field is moving rapidly towards using cell and molecular biology techniques and new imaging technologies to understand the molecular dialogue between plants and their microbial pathogens/symbionts. The need for a conference on this topic, the first of its type, is evidenced by the growing prominence of cell biology in the literature. Students and scientists in this field face many challenges in the application and interpretation of cell biology data and would greatly benefit from a specialized conference on this topic. The symposium will bring together a broad representation of researchers focussing on different cell biology aspects and will allow researchers across the different disciplines to present and exchange their recent advances in this important topic of plant biology.

Symposium rationale and scope - Plant organs are subject to colonisation and manipulation by microbes, and this requires reprogramming of host cell biology to accommodate microbial structures within tissues/cells and to mediate responses for proper immunity or for symbiosis. Host cell biology changes during microbial invasion were first reported more than 100 years ago based on microscopy studies revealing that many microbes project structures (haustoria, arbuscules) into plant cells that are enveloped with a specialized plant-­derived membrane and evidence now suggests an intimate molecular exchange takes place across these membrane interfaces. However, recent identification of some of the molecular players in these interactions is only now providing appropriate tools to analyse these events. The symposium will focus on advances in understanding the molecular interactions that occur between a microbe and its host at a cellular and subcellular level, such as:

how root and leaf cells accommodate microbial structures through biogenesis of specialized plant derived membranes, microbial invasion and spreading strategies (via stomata, roots, vasculature, plasmodesmata), the dynamic localization of cell surface and cytosolic receptors recognizing microbial signals the reprogramming of host membrane trafficking (focal accumulation, secretion), the delivery of microbial molecules from fungal and oomycete species into plant cells.

With recent advances in high resolution/throughput bioimaging we are gaining new insights into the cell biology mechanisms and pathways of plant cell interactions with diverse microbes. Therefore the symposium provides a timely and important opportunity to overview the application of these technologies to plant–microbe interactions, and to discuss recent discoveries emerging from diverse host–microbe interactions illustrating common underlying principles and differences of strategies used by the microbes to gain access to plant tissues/cells. The symposium will certainly trigger a wealth of discussions, exchange of findings and methodologies, and will promote new lines of research and ideas in this rapidly expanding field.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

Front. Plant Sci. : Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways (2014)

Front. Plant Sci. : Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways (2014) | Effectors and Plant Immunity | Scoop.it

In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin – proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.

 

S. Üstün and F. Börnke

Nicolas Denancé's insight:

Mini-review published in the Research topic on Genomics and Effectomics of the crop killer Xanthomonas.

more...
No comment yet.
Rescooped by Nicolas Denancé from microbial pathogenesis and plant immunity
Scoop.it!

EMBO: GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis

EMBO: GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis | Effectors and Plant Immunity | Scoop.it
Recognition of extracellular peptides by plasma membrane‐localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE‐9. GRI is cleaved by METACASPASE‐9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane‐localized, atypical leucine‐rich repeat receptor‐like kinase POLLEN‐SPECIFIC RECEPTOR‐LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS‐dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.

Via Suayib Üstün, Jim Alfano
more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

Mol. Plant Pathol.: The zigzag model of plant–microbe interactions: is it time to move on? (2014)

Mol. Plant Pathol.: The zigzag model of plant–microbe interactions: is it time to move on? (2014) | Effectors and Plant Immunity | Scoop.it
more...
No comment yet.
Rescooped by Nicolas Denancé from Plant evolution
Scoop.it!

Genome-wide association study of Arabidopsis thaliana leaf microbial community

Identifying the factors that influence the outcome of host–microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plantArabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.


Via Pierre-Marc Delaux
more...
No comment yet.
Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

PLOS Genetics: The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana (2014)

PLOS Genetics: The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana (2014) | Effectors and Plant Immunity | Scoop.it

Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of PseudomonasAvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Nicolas Denancé from Plants and Microbes
Scoop.it!

Frontiers: Epigenetic control of effectors in plant pathogens (2014)

Frontiers: Epigenetic control of effectors in plant pathogens (2014) | Effectors and Plant Immunity | Scoop.it

Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr) factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

PLoS pathogens: The Ins and Outs of Rust Haustoria (2014)

PLoS pathogens: The Ins and Outs of Rust Haustoria (2014) | Effectors and Plant Immunity | Scoop.it

Rust diseases caused by fungi of the order Pucciniales afflict a wide range of plants, including cereals, legumes, ornamentals, and fruit trees, and pose a serious threat to cropping systems and global food security. The obligate parasitic lifestyle of these fungi and their complex life cycles, often involving alternate hosts for the sexual and asexual stages, also make this group of pathogens of great biological interest. One of the most remarkable adaptations of rust fungi is the specialized infection structure that underpins the sustained biotrophic association with hosts; the haustorium (Figure 1A and C). This organ forms after penetration of the wall of a live host cell, expanding on the inner side of the cell wall while invaginating the surrounding host plasma membrane (Figure 1C). Through haustoria, the pathogen derives nutrients from the host and secretes virulence proteins called effectors, which are believed to be the key players that manipulate the physiological and immune responses of host cells [1]–[4]. Analogous terminal feeding structures have independently evolved in other organisms such as the haustorium in powdery mildews (ascomycetes) and downy mildews (oomycetes, not true fungi), and the arbuscules in arbuscular mycorrhizae, suggesting that such architecture represents a successful adaptation of these organisms to interact with their respective host plants [5], [6].

 

Garnica DP, Nemri A, Upadhyaya NM, Rathjen JP, Dodds PN

 

more...
No comment yet.
Scooped by Nicolas Denancé
Scoop.it!

Cell Host Microbes: Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life (2014)

Cell Host Microbes: Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life (2014) | Effectors and Plant Immunity | Scoop.it

While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this data set with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intraspecies and interspecies convergence and several altered immune response phenotypes. Several effectors and the most heavily targeted host protein colocalized in subnuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets.

 

Ralf Weßling, Petra Epple, Stefan Altmann,Yijian He, Li Yang, Stefan R. Henz, Nathan McDonald, Kristin Wiley, Kai Christian Bader, Christine Glaßer, M. Shahid Mukhtar, Sabine Haigis, Lila Ghamsari, Amber E. Stephens, Joseph R. Ecker, Marc Vidal, Jonathan D.G. Jones,Klaus F.X. Mayer, Emiel Ver Loren van Themaat, Detlef Weigel, Paul Schulze-Lefert, Jeffery L. Dangl, Ralph Panstruga, and Pascal Braun

more...
CP's curator insight, September 12, 4:04 AM

add your insight...

Suayib Üstün's comment, September 12, 4:45 AM
HopBF1 is HopZ4!
Suayib Üstün's curator insight, September 12, 5:14 AM

HopBF1 is HopZ4...

Scooped by Nicolas Denancé
Scoop.it!

Curr. Biol.: Type III secretion system (2014)

Curr. Biol.: Type III secretion system (2014) | Effectors and Plant Immunity | Scoop.it

The type III secretion system (T3SS) is a membrane-embedded nanomachine found in several Gram-negative bacteria. Upon contact between bacteria and host cells, the syringe-like T3SS transfers proteins termed effectors from the bacterial cytosol to the cytoplasm or the plasma membrane of a single target cell. This is a major difference from secretion systems that merely release molecules into the extracellular milieu, where they act on potentially distant target cells expressing the relevant surface receptors. The syringe architecture is conserved at the structural and functional level and supports injection into a great variety of hosts and tissues. However, the pool of effectors is species specific and determines the outcome of the interaction, via modulation of target-cell function.

 

Andrea Puhar & Philippe J. Sansonetti

more...
No comment yet.
Rescooped by Nicolas Denancé from TAL effector science
Scoop.it!

TAL effectors – pathogen strategies and plant resistance engineering - New Phytol.

TAL effectors – pathogen strategies and plant resistance engineering - New Phytol. | Effectors and Plant Immunity | Scoop.it

(via T. Schreiber, thx)

Boch et al, 2014

Transcription activator-like effectors (TALEs) from plant pathogenic Xanthomonas spp. and the related RipTALs from Ralstonia solanacearum are DNA-binding proteins with a modular DNA-binding domain. This domain is both predictable and programmable, which simplifies elucidation of TALE function in planta and facilitates generation of DNA-binding modules with desired specificity for biotechnological approaches. Recently identified TALE host target genes that either promote or stop bacterial disease provide new insights into how expression of TALE genes affects the plant–pathogen interaction. Since its elucidation the TALE code has been continuously refined and now provides a mature tool that, in combination with transcriptome profiling, allows rapid isolation of novel TALE target genes. The TALE code is also the basis for synthetic promoter-traps that mediate recognition of TALE or RipTAL proteins in engineered plants. In this review, we will summarize recent findings in plant-focused TALE research. In addition, we will provide an outline of the newly established gene isolation approach for TALE or RipTAL host target genes with an emphasis on potential pitfalls.


Via dromius
more...
No comment yet.
Rescooped by Nicolas Denancé from Plant Biology Teaching Resources (Higher Education)
Scoop.it!

Infographic: 9 plant diseases that threaten your favorite foods–and how GM can help | Genetic Literacy Project

Infographic: 9 plant diseases that threaten your favorite foods–and how GM can help | Genetic Literacy Project | Effectors and Plant Immunity | Scoop.it

"Nature is relentless, challenging farmers with weeds, insects and diseases. Advances in genetic modification offer some unique tools that can help increase food production despite these challenges."


Via Mary Williams
more...
No comment yet.