Muscles in old mice made young again | Biosciencia News | Scoop.it

Researchers have identified for the first time a key factor responsible for declining muscle repair during aging, and discovered that a common drug halts the process in mice.

 

A dormant reservoir of stem cells is present inside every muscle, ready to be activated by exercise and injury to repair any damage. When needed, these cells divide into hundreds of new muscle fibers that repair the muscle. At the end of the repairing process some of the cells also replenish the pool of dormant stem cells so that the muscle retains the ability to repair itself again and again.

The researchers carried out a study on old mice and found the number of dormant stem cells present in the pool reduces with age, which could explain the decline in the muscle’s ability to repair and regenerate as it gets older.

When these old muscles were screened the team found high levels of FGF2, a protein that has the ability to stimulate cells to divide. While encouraging stem cells to divide and repair muscle is a normal and crucial process, they found that FGF2 could also awaken the dormant pool of stem cells even when they were not needed. The continued activation of dormant stem cells meant the pool was depleted over time, so when the muscle really needed stem cells to repair itself the muscle was unable to respond properly.

 

Researchers then attempted to inhibit FGF2 in old muscles to prevent the stem cell pool from being kick-started into action unnecessarily. By administering a common FGF2 inhibitor drug they were able to inhibit the decline in the number of muscle stem cells in the mice.

 

“Preventing or reversing muscle wasting in old age in humans is still a way off, but this study has for the first time revealed a process which could be responsible for age-related muscle wasting, which is extremely exciting,” says Albert Basson, Senior Lecturer from the department of craniofacial development and stem cell biology at the King’s College London Dental Institute.

 

“The finding opens up the possibility that one day we could develop treatments to make old muscles young again. If we could do this, we may be able to enable people to live more mobile, independent lives as they age.”


Via Dr. Stefan Gruenwald