Biosciences
8 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Scooped by Céline Bouquerel
Scoop.it!

Les biotechs affolent la Bourse

Les biotechs affolent la Bourse | Biosciences | Scoop.it
Les biotechnologies ont vécu une journée d'euphorie, lundi, avec la vente à prix d'or de deux sociétés. L'américain Auspex a été racheté...
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

La frénésie fiscale menace le dynamisme des biotechs en France

La frénésie fiscale menace le dynamisme des biotechs en France | Biosciences | Scoop.it
Une décision fiscale met en péril le secteur florissant des biotechnologies en France. Des lanceurs d’alertes s’inquiètent des conséquences de la grève actuelle d’un chaînon indispensable à la recherche clinique. En six mois, une centaine de millions de contrats perdus par un pan du métier, plusieurs dizaines de dossiers en attente, des surcoûts pour les industriels du médicament qui, en prime, perdent du temps dans un secteur où arriver le premier est primordial. Tout cela pour que l’Etat engra
more...
No comment yet.
Rescooped by Céline Bouquerel from Modern Agricultural Biotechnology
Scoop.it!

Benefits of BIOTECHNOLOGY in agriculture | Agri-biotech

Biotechnology is the application of scientific techniques 
to modify and improve plants, animals, and microor­
ganisms to enhance their value. Agricultural biotech­
nology is the area of biotechnology involving applica­
tions to agriculture. Agricultural biotechnology has been 
practiced for a long time, as people have sought to im­
prove agriculturally important organisms by selection 
and breeding. An example of traditional agricultural bio­
technology is the development of disease-resistant wheat 
varieties by cross-breeding different wheat types until 
the desired disease resistance was present in a resulting 
new variety. 
In the 1970s, advances in the field of molecular biol­
ogy provided scientists with the ability to manipulate 
DNA—the chemical building blocks that specify the char­
acteristics of living organisms—at the molecular level. 
This technology is called genetic engineering. It also al­
lows transfer of DNA between more distantly related or­
ganisms than was possible with traditional breeding tech­
niques. Today, this technology has reached a stage where 
scientists can take one or more specific genes from nearly 
any organism, including plants, animals, bacteria, or vi­
ruses, and introduce those genes into another organism. 
An organism that has been transformed using genetic 
engineering techniques is referred to as a transgenic or­
ganism, or a genetically engineered organism. 
Many other terms are in popular use to describe these 
aspects of today’s biotechnology. The term “genetically 
modified organism” or “GMO” is widely used, although 
genetic modification has been around for hundreds if 
not thousands of years, since deliberate crosses of one 
variety or breed with another result in offspring that are 
genetically modified compared to the parents. Similarly, 
foods derived from transgenic plants have been called 
“GMO foods,” “GMPs” (genetically modified products), 
and “biotech foods.” While some refer to foods devel­
oped from genetic engineering technology as “biotech­
nology-enhanced foods,” others call them 
“frankenfoods.” For the reasons discussed later in this 
publication, controversy affects various issues related 
to the growing of genetically engineered organisms.

What are the benefits of genetic engineering 
in agriculture? 
Everything in life has its benefits and risks, and genetic 
engineering is no exception. Much has been said about 
potential risks of genetic engineering technology, but 
so far there is little evidence from scientific studies that 
these risks are real. Transgenic organisms can offer a 
range of benefits above and beyond those that emerged 
from innovations in traditional agricultural biotechnol­
ogy. Following are a few examples of benefits resulting 
from applying currently available genetic engineering 
techniques to agricultural biotechnology. 
Increased crop productivity 
Biotechnology has helped to increase crop productivity 
by introducing such qualities as disease resistance and 
increased drought tolerance to the crops. Now, research­
ers can select genes for disease resistance from other 
species and transfer them to important crops. For ex­
ample, researchers from the University of Hawaii and 
Cornell University developed two varieties of papaya 
resistant to papaya ringspot virus by transferring one of 
the virus’ genes to papaya to create resistance in the 
plants. Seeds of the two varieties, named ‘SunUp’ and 
‘Rainbow’, have been distributed under licensing agree­
ments to papaya growers since 1998. 
Further examples come from dry climates, where 
crops must use water as efficiently as possible. Genes 
from naturally drought-resistant plants can be used to 
increase drought tolerance in many crop varieties. 
Enhanced crop protection 
Farmers use crop-protection technologies because they 
provide cost-effective solutions to pest problems which, 
if left uncontrolled, would severely lower yields. As 
mentioned above, crops such as corn, cotton, and potato 
have been successfully transformed through genetic 
engineering to make a protein that kills certain insects 
when they feed on the plants. The protein is from the 
soil bacterium Bacillus thuringiensis, which has been 
used for decades as the active ingredient of some “natu­
ral” insecticides. 
In some cases, an effective transgenic crop-protec­
tion technology can control pests better and more cheaply 
than existing technologies. For example, with Bt engi­
neered into a corn crop, the entire crop is resistant to

certain pests, not just the part of the plant to which Bt 
insecticide has been applied. In these cases, yields in­
crease as the new technology provides more effective 
control. In other cases, a new technology is adopted be­
cause it is less expensive than a current technology with 
equivalent control. 
There are cases in which new technology is not 
adopted because for one reason or another it is not com­
petitive with the existing technology. For example, or­
ganic farmers apply Bt as an insecticide to control in­
sect pests in their crops, yet they may consider transgenic 
Bt crops to be unacceptable. 
Improvements in food processing 
The first food product resulting from genetic engineer­
ing technology to receive regulatory approval, in 1990, 
was chymosin, an enzyme produced by genetically en­
gineered bacteria. It replaces calf rennet in cheese-mak­
ing and is now used in 60 percent of all cheese manu­
factured. Its benefits include increased purity, a reliable 
supply, a 50 percent cost reduction, and high cheese­
yield efficiency. 
Improved nutritional value 
Genetic engineering has allowed new options for im­
proving the nutritional value, flavor, and texture of foods. 
Transgenic crops in development include soybeans with 
higher protein content, potatoes with more nutritionally 
available starch and an improved amino acid content, 
beans with more essential amino acids, and rice with 
the ability produce beta-carotene, a precursor of vita­
min A, to help prevent blindness in people who have 
nutritionally inadequate diets. 
Better flavor 
Flavor can be altered by enhancing the activity of plant 
enzymes that transform aroma precursors into flavoring 
compounds. Transgenic peppers and melons with im­
proved flavor are currently in field trials. 
Fresher produce 
Genetic engineering can result in improved keeping 
properties to make transport of fresh produce easier, giv­
ing consumers access to nutritionally valuable whole 
foods and preventing decay, damage, and loss of nutri­
ents. Transgenic tomatoes with delayed softening can 
be vine-ripened and still be shipped without bruising. 
Research is under way to make similar modifications to 
broccoli, celery, carrots, melons, and raspberry. The shelf 
life of some processed foods such as peanuts has also 
been improved by using ingredients that have had their 
fatty acid profile modified. 
Environmental benefits 
When genetic engineering results in reduced pesticide 
dependence, we have less pesticide residues on foods, 
we reduce pesticide leaching into groundwater, and we 
minimize farm worker exposure to hazardous products. 
With Bt cotton’s resistance to three major pests, the 
transgenic variety now represents half of the U.S. cot­
ton crop and has thereby reduced total world insecticide 
use by 15 percent! Also, according to the U.S. Food and 
Drug Administration (FDA), “increases in adoption of 
herbicide-tolerant soybeans were associated with small 
increases in yields and variable profits but significant 
decreases in herbicide use” (our italics). 
Benefits for developing countries 
Genetic engineering technologies can help to improve 
health conditions in less developed countries. Research­
ers from the Swiss Federal Institute of Technology’s In­
stitute for Plant Sciences inserted genes from a daffodil 
and a bacterium into rice plants to produce “golden rice,” 
which has sufficient beta-carotene to meet total vitamin 
A requirements in developing countries with rice-based 
diets. This crop has potential to significantly improve 
vitamin uptake in poverty-stricken areas where vitamin 
supplements are costly and difficult to distribute and 
vitamin A deficiency leads to blindness in children.

Share this: 


Via Kwame Ogero
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Valneva :

Valneva : | Biosciences | Scoop.it
Un vent d'euphorie souffle depuis quelques mois sur les sociétés de biotechnologies. Une tendance démarrée fin 2013 et qui va en s'accélérant …
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Comment la chimie s’impose comme un secteur majeur des cleantech | Cleantech Republic

Comment la chimie s’impose comme un secteur majeur des cleantech | Cleantech Republic | Biosciences | Scoop.it
Tant dans sa réalité industrielle d’aujourd’hui que dans ses projets de recherche, la chimie se range implicitement dans le champ des cleantechs.
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Les filières eau, déchets et ENR signent un contrat avec l'Etat

Les filières eau, déchets et ENR signent un contrat avec l'Etat | Biosciences | Scoop.it
Trois contrats de filières ont été présentés au Comité stratégique de filière des éco-industries : énergies renouvelables, eau et déchets. Ils engagent réciproquement l'Etat et les industriels dans une stratégie de développement à long terme.
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

La Cour des comptes fustige le Crédit impôt recherche

La Cour des comptes fustige le Crédit impôt recherche | Biosciences | Scoop.it
La Cour des comptes a rendu mercredi un rapport dans lequel elle juge le Crédit Impôt Recherche (CIR) coûteuse et mal contrôlée. L'institution préconise notamment la dématérialisation de la déclaration du CIR.
Céline Bouquerel's insight:

Le CIR n'est peut-être pas efficace poru tout le monde, mais de nombreuses entreprises de R&D ne pourraient pas financer leur recherche sans lui, à l'heure où les marchés de capitaux sont aussi très frileux.

more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Un eco système favorable à la croissance des jeunes pousses : les ...

Un eco système favorable à la croissance des jeunes pousses : les ... | Biosciences | Scoop.it
Il est un domaine en France où l'innovation, la recherche, le financement semblent à la hauteur de la compétition internationale : les biotechnologies. De nombreuses jeunes pousses émergent, se développent souvent...
Céline Bouquerel's insight:

Un article très positif sur la qualité de la chaîne de financement des start-ups biotechs en France

more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Essais cliniques : l’attractivité de la France se dégrade

Essais cliniques : l’attractivité de la France se dégrade | Biosciences | Scoop.it
Le constat est inquiétant : d’année en année, l’attractivité de la France en matière d’essais cliniques se dégrade. Les études...
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

L’inexorable paupérisation de la recherche

L’inexorable paupérisation de la recherche | Biosciences | Scoop.it
Deux ans après les Assises de la recherche qui avaient mis en évidence les problèmes structurels du système français, la situation des...
Céline Bouquerel's insight:

La recherche française serait victime de toujours moins d'argent et toujours plus de bureaucratie. Le point de vue intéressant d'un intéressé

more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

The Drug Discovery INFOGRAPHIC | JP Science Marketing

The Drug Discovery INFOGRAPHIC | JP Science Marketing | Biosciences | Scoop.it
A free graphic for Pharma marketers | Drug Discovery Infographic by JP Science Marketing visualizes the steps & investments necessary to develop a new drug
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

« Il y a une très forte demande pour les produits bio-sourcés »

« Il y a une très forte demande pour les produits bio-sourcés » | Biosciences | Scoop.it
Installé près de Compiègne, Pivert aura pour but de développer une chimie utilisant des matières premières agricoles en remplacement des matières premiè [...] - Région - Le Courrier picard
Céline Bouquerel's insight:

Un nouvel acteur dans la course au développement de la chimie du végétal.

more...
No comment yet.
Rescooped by Céline Bouquerel from Slash's Science & Technology Scoop
Scoop.it!

Renewables now cheaper than coal and gas in Australia : Renew Economy

Renewables now cheaper than coal and gas in Australia : Renew Economy | Biosciences | Scoop.it
New analysis from Bloomberg New Energy Finance concludes that renewables are already cheaper than new build coal and gas in Australia.

Via Sascha Humphrey
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Démarrage de la campagne betteravière - Tereos prévoit 13 t/ha, ce qui n'empêche pas la relance de ses grands chantiers - Agrisalon

Démarrage de la campagne betteravière - Tereos prévoit 13 t/ha, ce qui n'empêche pas la relance de ses grands chantiers - Agrisalon | Biosciences | Scoop.it
more...
No comment yet.
Scooped by Céline Bouquerel
Scoop.it!

Reinventing Life Science Startups–Therapeutics and Diagnostics

Reinventing Life Science Startups–Therapeutics and Diagnostics | Biosciences | Scoop.it
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light...
Céline Bouquerel's insight:

L'article fait une synthèse très didactique de l'évolution du business model de développement de nouveaux médicaments par l'industrie pharma, en expliquant la différence entre molécules chimiques et biologiques, les investissements de productivité réalisés sur les 40 dernières années, avec des résultats bien moindres qu'anticipés, et l'impact sur la chaîne de financement de l'industrie.

more...
No comment yet.