Biomimicry
46.2K views | +12 today
Follow
Biomimicry
Nature inspired innovation
Your new post is loading...
Your new post is loading...
Scooped by Miguel Prazeres
Scoop.it!

Longhorn Beetle Inspires Ink to Fight Counterfeiting

Longhorn Beetle Inspires Ink to Fight Counterfeiting | Biomimicry | Scoop.it

"From water marks to colored threads, governments are constantly adding new features to paper money to stay one step ahead of counterfeiters. Now a longhorn beetle has inspired yet another way to foil cash fraud, as well as to produce colorful, changing billboards and art displays. In the journal ACS Nano, researchers report a new kind of ink that mimics the beetle’s color-shifting ability in a way that would be long-lasting and difficult to copy."

more...
No comment yet.
Scooped by Miguel Prazeres
Scoop.it!

How the Disco Clam Got its Flash

How the Disco Clam Got its Flash | Biomimicry | Scoop.it

"As molluscs go, Ctenoides ales is quite literally one of the flashiest. A native of the Indo-Pacific region, the creature is known as the disco clam because the soft tissues of its ‘lips’ flash like a mirror ball above a dance floor. A study published today finds that the disco clam achieves this using nanoparticles of silica to reflect light.".

more...
No comment yet.
Scooped by Miguel Prazeres
Scoop.it!

One Butterfly Inspires Multiple Technologies

One Butterfly Inspires Multiple Technologies | Biomimicry | Scoop.it

"The Morpho is a jewel among butterflies, with its gracefully contoured, iridescent blue wings flashing in the breeze. Familiar from the cover of Illustra's film Metamorphosis, this species exhibits additional intelligent designs the film didn't have time to discuss. Their brilliant color comes not from pigments but from precisely aligned structures in the wing scales that play tricks with light, producing what physicists call "structural color." Certain colors are canceled out, and others reinforced, by the arrangement of "photonic crystals" that resemble tiny trees made of biomolecule chitin. Engineers have already mimicked the iridescence by creating photonic crystals of their own. But there's more. The structures on Morpho butterfly wings also absorb heat, repel water, and control the flow of vapors. The Morpho is a treasure house of design ideas for biomimetics projects, as research news from the University of Exeter reveals. From fabrics to cosmetics to sensors, all kinds of innovations are being inspired by this one genus of butterfly."

more...
No comment yet.
Scooped by Miguel Prazeres
Scoop.it!

Bio-inspiration Transforming Cosmetics: Consumer Awareness Rising

Bio-inspiration Transforming Cosmetics: Consumer Awareness Rising | Biomimicry | Scoop.it
Industry and consumer awareness of biomimetics is on the rise as demand for naturals continues to climb, with the combination of science and nature increasingly appealing for skin care products. 
more...
No comment yet.
Scooped by Miguel Prazeres
Scoop.it!

Deciphering Butterflies' Designer Colors: Findings Could Inspire New Hue-changing Materials

Deciphering Butterflies' Designer Colors: Findings Could Inspire New Hue-changing Materials | Biomimicry | Scoop.it

"Butterfly wings can do remarkable things with light, and humans are still trying to learn from them. Physicists have now uncovered how subtle differences in the tiny crystals of butterfly wings create stunningly varied patterns of color even among closely related species. The discovery, reported today in the Optical Society's (OSA) open-access journal Optical Materials Express, could lead to new coatings for manufactured materials that could change color by design, if researchers can figure out how to replicate the wings' light-manipulating properties."

more...
No comment yet.
Scooped by Miguel Prazeres
Scoop.it!

Bioinspired Fibers Change Color When Stretched

Bioinspired Fibers Change Color When Stretched | Biomimicry | Scoop.it

"A team of materials scientists at Harvard University and the University of Exeter, UK, have invented a new fiber that changes color when stretched. Inspired by nature, the researchers identified and replicated the unique structural elements that create the bright iridescent blue color of a tropical plant’s fruit."

more...
No comment yet.