Plant-microbe int...
Follow
Find
19.9K views | +30 today
 
Scooped by Suayib Üstün
onto Plant-microbe interaction
Scoop.it!

G Protein-Coupled Receptors (GPCRs) win 2012 Nobel Prize in Chemistry | The Curious Wavefunction, Scientific American Blog Network

G Protein-Coupled Receptors (GPCRs) win 2012 Nobel Prize in Chemistry | The Curious Wavefunction, Scientific American Blog Network | Plant-microbe interaction | Scoop.it
Brian Kobilka (Stanford) and Robert Lefkowitz (Duke) have won the 2012 Nobel Prize in Chemistry for their work on one of the most important classes of ...
more...
No comment yet.
Plant-microbe interaction
Current research on plant immunity, effector proteins, and other inspiring articles
Curated by Suayib Üstün
Your new post is loading...
Your new post is loading...
Scooped by Suayib Üstün
Scoop.it!

PLOS Pathogens: The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence

PLOS Pathogens: The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence | Plant-microbe interaction | Scoop.it

The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) requires type III effector proteins (T3Es) for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast andin planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA) and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed.

more...
CP's comment, June 14, 2013 9:14 AM
Congrats again!!
Freddy Monteiro's comment, February 20, 2:32 PM
Jim, I agree: another great publication to go side by side with this one: <br> Gimenez-Ibanez et al. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLOS Biology 2014.<br>http://dx.plos.org/10.1371/journal.pbio.1001792
Freddy Monteiro's curator insight, February 20, 2:33 PM

Another great publication to go side by side with this one:

Gimenez-Ibanez et al. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLOS Biology 2014.

http://dx.plos.org/10.1371/journal.pbio.1001792

Scooped by Suayib Üstün
Scoop.it!

Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. - Seybold - 2014 - New Phytologist - Wiley Online Library

Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. - Seybold - 2014 - New Phytologist - Wiley Online Library | Plant-microbe interaction | Scoop.it
Summary

Ca2+ is a ubiquitous second messenger for cellular signalling in various stresses and developmental processes. Here, we summarize current developments in the roles of Ca2+ during plant immunity responses. We discuss the early perception events preceding and necessary for triggering cellular Ca2+ fluxes, the potential Ca2+-permeable channels, the decoding of Ca2+ signals predominantly via Ca2+-dependent phosphorylation events and transcriptional reprogramming. To highlight the complexity of the cellular signal network, we briefly touch on the interplay between Ca2+-dependent signalling and selected major signalling mechanisms – with special emphasis on reactive oxygen species at local and systemic levels.

more...
No comment yet.
Rescooped by Suayib Üstün from Effectors and Plant Immunity
Scoop.it!

Cell Host Microbes: Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life (2014)

Cell Host Microbes: Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life (2014) | Plant-microbe interaction | Scoop.it

While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this data set with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intraspecies and interspecies convergence and several altered immune response phenotypes. Several effectors and the most heavily targeted host protein colocalized in subnuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets.

 

Ralf Weßling, Petra Epple, Stefan Altmann,Yijian He, Li Yang, Stefan R. Henz, Nathan McDonald, Kristin Wiley, Kai Christian Bader, Christine Glaßer, M. Shahid Mukhtar, Sabine Haigis, Lila Ghamsari, Amber E. Stephens, Joseph R. Ecker, Marc Vidal, Jonathan D.G. Jones,Klaus F.X. Mayer, Emiel Ver Loren van Themaat, Detlef Weigel, Paul Schulze-Lefert, Jeffery L. Dangl, Ralph Panstruga, and Pascal Braun


Via Nicolas Denancé
Suayib Üstün's insight:

HopBF1 is HopZ4...

more...
CP's curator insight, September 12, 4:04 AM

add your insight...

Suayib Üstün's comment, September 12, 4:45 AM
HopBF1 is HopZ4!
Scooped by Suayib Üstün
Scoop.it!

Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family

Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family | Plant-microbe interaction | Scoop.it
Summary

Selective ubiquitin-dependent autophagy plays a pivotal role in the elimination of protein aggregates, assemblies, or organelles and counteracts the cytotoxicity of proteins linked to neurodegenerative diseases. Following substrate ubiquitylation, the cargo is delivered to autophagosomes involving adaptors like human p62 that bind ubiquitin and the autophagosomal ubiquitin-like protein Atg8/LC3; however, whether similar pathways exist in lower eukaryotes remained unclear. Here, we identify by a screen in yeast a new class of ubiquitin-Atg8 adaptors termed CUET proteins, comprising the ubiquitin-binding CUE-domain protein Cue5 from yeast and its human homolog Tollip. Cue5 collaborates with Rsp5 ubiquitin ligase, and the corresponding yeast mutants accumulate aggregation-prone proteins and are vulnerable to polyQ protein expression. Similarly, Tollip depletion causes cytotoxicity toward polyQ proteins, whereas Tollip overexpression clears human cells from Huntington’s disease-linked polyQ proteins by autophagy. We thus propose that CUET proteins play a critical and ancient role in autophagic clearance of cytotoxic protein aggregates.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Global Analysis of the HrpL Regulon in the Plant Pathogen Pseudomonas syringae pv. tomato DC3000 Reveals New Regulon Members with Diverse Functions

Global Analysis of the HrpL Regulon in the Plant Pathogen Pseudomonas syringae pv. tomato DC3000 Reveals New Regulon Members with Diverse Functions | Plant-microbe interaction | Scoop.it

The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the “hrp promoter.” Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signalling : Nature Communications : Nature Publishing Group

Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signalling : Nature Communications : Nature Publishing Group | Plant-microbe interaction | Scoop.it

Brassinosteroids (BRs) are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the bri1-EMS suppressor 1/brassinazole resistant 1 subfamily, and BRs activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that BRs induce nuclear compartmentalization of CESTA(CES), a basic helix-loop-helix transcription factor that regulates BR responses, and reveal that this process is regulated by CES SUMOylation. We demonstrate that CES contains an extended SUMOylation motif, and that SUMOylation of this motif is antagonized by phosphorylation to control CES subnuclear localization. Moreover, we provide evidence that phosphorylation regulates CEStranscriptional activity and protein turnover by the proteasome. A coordinated modification model is proposed in which, in a BR-deficient situation, CES is phosphorylated to activate target gene transcription and enable further posttranslational modification that controls CES protein stability and nuclear dynamics.

more...
No comment yet.
Rescooped by Suayib Üstün from Plant-microbe interactions (on the plant's side)
Scoop.it!

To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability -

To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability - | Plant-microbe interaction | Scoop.it

How plants balance resource allocation between growth and defense under conditions of competitive stress is a key question in plant biology. Low red : far-red (R : FR) ratios, which signal a high risk of competition in plant canopies, repress jasmonate-induced defense responses. The mechanism of this repression is not well understood. We addressed this problem in Arabidopsis by investigating the role of DELLA and JASMONATE ZIM domain (JAZ) proteins.We showed that a quintuple della mutant and a phyB mutant were insensitive to jasmonate for several physiological readouts. Inactivation of the photoreceptor phyB by low R : FR ratios rapidly reduced DELLA protein abundance, and the inhibitory effect of FR on jasmonate signaling was missing in the gai-1 mutant, which encodes a stable version of the GAI DELLA protein.We also demonstrated that low R : FR ratios and the phyB mutation stabilized the protein JAZ10. Furthermore, we demonstrated that JAZ10 was required for the inhibitory effect of low R : FR on jasmonate responses, and that the jaz10 mutation restored jasmonate sensitivity to the phyB mutant.We conclude that, under conditions of competition for light, plants redirect resource allocation from defense to rapid elongation by promoting DELLA degradation and enhancing JAZ10 stability.


Via Christophe Jacquet
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

The Arabidopsis Malectin-Like Leucine-Rich Repeat Receptor-Like Kinase IOS1 Associates with the Pattern Recognition Receptors FLS2 and EFR and Is Critical for Priming of Pattern-Triggered Immunity

The Arabidopsis Malectin-Like Leucine-Rich Repeat Receptor-Like Kinase IOS1 Associates with the Pattern Recognition Receptors FLS2 and EFR and Is Critical for Priming of Pattern-Triggered Immunity | Plant-microbe interaction | Scoop.it

Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants demonstrated defective PTI responses, notably delayed upregulation of PTI marker genes, lower callose deposition, and mitogen-activated protein kinase activities upon bacterial infection or MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to P. syringae and demonstrated a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and FLS2 and EFR. IOS1 also associated with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in a ligand-independent manner and positively regulated FLS2/BAK1 complex formation upon MAMP treatment. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a regulatory protein of FLS2- and EFR-mediated signaling that primes PTI activation upon bacterial elicitation.

more...
No comment yet.
Rescooped by Suayib Üstün from microbial pathogenesis and plant immunity
Scoop.it!

Frontiers | Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria | Plant-Microbe Interaction

Frontiers | Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria | Plant-Microbe Interaction | Plant-microbe interaction | Scoop.it

Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.


Via Jim Alfano
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta: Cell Host & Microbe

Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta: Cell Host & Microbe | Plant-microbe interaction | Scoop.it

The type VI secretion system (T6SS) is a widespread molecular weapon deployed by many Proteobacteria to target effectors/toxins into both eukaryotic and prokaryotic cells. We report that Agrobacterium tumefaciens, a soil bacterium that triggers tumorigenesis in plants, produces a family of type VI DNase effectors (Tde) that are distinct from previously known polymorphic toxins and nucleases. Tde exhibits an antibacterial DNase activity that relies on a conserved HxxD motif and can be counteracted by a cognate immunity protein, Tdi. In vitro, A. tumefaciens T6SS could kill Escherichia coli but triggered a lethal counterattack by Pseudomonas aeruginosa upon injection of the Tde toxins. However, in an in planta coinfection assay, A. tumefaciens used Tde effectors to attack both siblings cells and P. aeruginosa to ultimately gain a competitive advantage. Such acquired T6SS-dependent fitness in vivo and conservation of Tde-Tdi couples in bacteria highlights a widespread antibacterial weapon beneficial for niche colonization

more...
Scooped by Suayib Üstün
Scoop.it!

Characterization of the Largest Effector Gene Cluster of Ustilago maydis

Characterization of the Largest Effector Gene Cluster of Ustilago maydis | Plant-microbe interaction | Scoop.it

In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

more...
No comment yet.
Rescooped by Suayib Üstün from Emerging Research in Plant Cell Biology
Scoop.it!

The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans

The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans | Plant-microbe interaction | Scoop.it

Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.


Via Francis Martin, Jennifer Mach
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis

HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis | Plant-microbe interaction | Scoop.it

A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.

more...
No comment yet.
Rescooped by Suayib Üstün from Plant-microbe interactions (on the plant's side)
Scoop.it!

Molecular and cellular control of cell death and defense signaling in pepper

Molecular and cellular control of cell death and defense signaling in pepper | Plant-microbe interaction | Scoop.it

Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.

 

 


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Suayib Üstün from Plant-microbe interactions (on the plant's side)
Scoop.it!

The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana

The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana | Plant-microbe interaction | Scoop.it

One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show that the protein encoded by At3g50930 is present as a homo-multimeric protein complex on the outer mitochondrial membrane and lacks the BCS1 domain present in yeast and mammalian BCS1 proteins, with the sequence similarity restricted to the AAA ATPase domain. Thus we propose to re-annotate this protein as AtOM66 (Outer Mitochondrial membrane protein of 66 kDa). While transgenic plants with reduced AtOM66 expression appear phenotypically normal, AtOM66 over-expression lines have a distinct phenotype, showing strong leaf curling and increased starch content. Analysis of mitochondrial protein content demonstrated no detectable changes in mitochondrial respiratory complex protein abundance. Consistent with the stress inducible expression pattern, overexpression lines of AtOM66 are more tolerant to drought stress but undergo stress-induced senescence earlier than wild type. Genome-wide expression analysis revealed a constitutive induction of salicylic acid-related (SA) pathogen defence and cell death genes in over-expression lines. Conversely, expression of SA marker gene PR-1 was reduced in atom66 plants, while jasmonic acid response genes PDF1.2 and VSP2 have increased transcript abundance. In agreement with the expression profile, AtOM66 over-expression plants show increased SA content, accelerated cell death rates and are more tolerant to the biotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic fungus Botrytis cinerea. In conclusion, our results demonstrate a role for AtOM66 in cell death and amplifying SA signalling.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Suayib Üstün from Publications from The Sainsbury Laboratory
Scoop.it!

J Exp Bot: Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots (2014)

J Exp Bot: Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots (2014) | Plant-microbe interaction | Scoop.it

Pathogens can colonize all plant organs and tissues. To prevent this, each cell must be capable of autonomously triggering defence. Therefore, it is generally assumed that primary sensors of the immune system are constitutively present. One major primary sensor against bacterial infection is the FLAGELLIN SENSING 2 (FLS2) pattern recognition receptor (PRR). To gain insights into its expression pattern, the FLS2 promoter activity in β-glucuronidase (GUS) reporter lines was monitored. The data show that pFLS2::GUS activity is highest in cells and tissues vulnerable to bacterial entry and colonization, such as stomata, hydathodes, and lateral roots. GUS activity is also high in the vasculature and, by monitoring Ca2+responses in the vasculature, it was found that this tissue contributes to flg22-induced Ca2+ burst. The FLS2 promoter is also regulated in a tissue- and cell type-specific manner and is responsive to hormones, damage, and biotic stresses. This results in stimulus-dependent expansion of the FLS2 expression domain. In summary, a tissue- and cell type-specific map of FLS2 expression has been created correlating with prominent entry sites and target tissues of plant bacterial pathogens.


Via The Sainsbury Lab
more...
The Sainsbury Lab's curator insight, September 11, 4:09 AM

Pathogens can colonize all plant organs and tissues. To prevent this, each cell must be capable of autonomously triggering defence. Therefore, it is generally assumed that primary sensors of the immune system are constitutively present. One major primary sensor against bacterial infection is the FLAGELLIN SENSING 2 (FLS2) pattern recognition receptor (PRR). To gain insights into its expression pattern, the FLS2 promoter activity in β-glucuronidase (GUS) reporter lines was monitored. The data show that pFLS2::GUS activity is highest in cells and tissues vulnerable to bacterial entry and colonization, such as stomata, hydathodes, and lateral roots. GUS activity is also high in the vasculature and, by monitoring Ca2+responses in the vasculature, it was found that this tissue contributes to flg22-induced Ca2+ burst. The FLS2 promoter is also regulated in a tissue- and cell type-specific manner and is responsive to hormones, damage, and biotic stresses. This results in stimulus-dependent expansion of the FLS2 expression domain. In summary, a tissue- and cell type-specific map of FLS2 expression has been created correlating with prominent entry sites and target tissues of plant bacterial pathogens.

Scooped by Suayib Üstün
Scoop.it!

The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7

The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7 | Plant-microbe interaction | Scoop.it

In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, includingprePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 andprePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsisendogenous secreted peptides

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Autophagy as initiator or executioner of cell death: Trends in Plant Science

Autophagy as initiator or executioner of cell death: Trends in Plant Science | Plant-microbe interaction | Scoop.it

•Autophagy can suppress, initiate, or execute cell death depending on the biological context.

•Autophagy is an initiator of localized, hypersensitive response-associated cell death upon pathogen infection.

•Autophagy executes ‘formative’ vacuolar cell death and prevents ‘destructive’ necrosis in terminally differentiated cells.

•Homeostatic and anti-aging functions of autophagy complicate the dissection of its distinct roles in cell death.

Autophagy plays multiple, often antagonistic roles in plants. In particular, cytoprotective functions of autophagy are well balanced by cell death functions to compensate for the absence of apoptosis culminating in phagocytic clearance of dead cells. If autophagy is indeed required for plant programmed cell death (PCD), then what place does it occupy in the PCD pathways? Recent studies have examined the effects of impaired autophagy on pathogen-induced hypersensitive response (HR) and developmental PCD. While HR death was efficiently suppressed, inhibition of autophagy induced a switch from vacuolar PCD essential for development to necrosis. We therefore propose a dual role for autophagy in plant PCD: as an effector of HR PCD lying upstream of the ‘point-of-no-return’, and also as a downstream mechanism for clearance of terminally differentiated cells during developmental PCD.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System : Scientific Reports : Nature Pub...

Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System : Scientific Reports : Nature Pub... | Plant-microbe interaction | Scoop.it
It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD.
more...
No comment yet.
Rescooped by Suayib Üstün from Effectors and Plant Immunity
Scoop.it!

Call for participation - Front. Plant Sci.: Research Topic on Genomics and Effectomics of the crop killer Xanthomonas

Call for participation - Front. Plant Sci.: Research Topic on Genomics and Effectomics of the crop killer Xanthomonas | Plant-microbe interaction | Scoop.it

Phytopathogenic bacteria of the Xanthomonas genus cause severe diseases on hundreds host plants, including economically important crops, such as rice, wheat, cassava, banana, mango, tomato, citrus, cabbage, pepper, bean and cotton. Diseases occurring in nature comprise black rot, leaf/fruit spot, canker, wilt, leaf blight and streak. These bacteria are present worldwide where some phytopathogenic strains are emergent or re-emergent and, consequently, dramatically impact agriculture, economy and food safety.

Xanthomonas bacteria provide excellent models for genomic studies and hundreds of Xanthomonas genome sequences have been obtained since 2002 and many other are underway (www.xanthomonas.org/genomes.html). Comparative genomics between and/or within bacterial species and/or pathovars will be of a great help to decipher commonalities and particularities that underly host range definition.

Most of the Xanthomonas possesses a type III secretion system (T3SS) that is required for injection of various effectors inside plant cells, thus contributing to pathogenicity. Transcription Activator-Like (tal) genes, encode bacterial transcription factors which are injected through the T3SS by many Xanthomonas to promote pathogenicity. Some Ralstonia, Bulkholderia and marine bacteria also express TAL-like proteins which function and mode of action is starting to be deciphered. TALs are addressed to the plant nucleus where they activate plant gene expression by direct binding to the corresponding promoter sequences. Targeted genes essentially act as susceptibility genes. A few years after the cracking of the code allowing the TAL/Host promoter sequence recognition, combined to the ever-growing availability of plant genomes, many efforts have been done to identify TAL targets. These data collected for many Xanthomonas/host pathosystems will assuredly help breeders to breed resistance resistant in important crops.

In this Research Topic we aim to collect manuscripts covering the current knowledge of Xanthomonas genomics and effectomics, with a special focus on TAL effector biology. Specifically, we encourage the submission of manuscripts (Original Research, Hypothesis & Theory, Methods, Reviews, Mini Reviews, Perspective and Opinion) covering the following topics:
1. Manuscripts reporting genome sequencing of Xanthomonas strains.
2. Manuscripts describing functional and comparative genomics in Xanthomonas species/pathovars.
3. Manuscripts describing functional studies on Xanthomonas type III effectors.
3. Manuscripts describing discovery, evolution, bio-informatics and functional genomics of TAL effectors and their targets in plant genomes, as well as for TAL-like in non-Xanthomonas bacteria.
4. Manuscripts describing applications of TAL effector research for resistance breeding in crops.

We anticipate that this Research Topic will be of importance for plant pathologists and breeders.

 

Nicolas Denancé
Guest Associate Editor, Plant-Microbe Interaction
www.frontiersin.org


Via Nicolas Denancé
Suayib Üstün's insight:

Great topic-excited!

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Pto Kinase Binds Two Domains of AvrPtoB and Its Proximity to the Effector E3 Ligase Determines if It Evades Degradation and Activates Plant Immunity

Pto Kinase Binds Two Domains of AvrPtoB and Its Proximity to the Effector E3 Ligase Determines if It Evades Degradation and Activates Plant Immunity | Plant-microbe interaction | Scoop.it

The tomato—Pseudomonas syringae pv. tomato (Pst)—pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450) in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.

 

more...
Jim Alfano's curator insight, July 25, 7:51 AM

Important paper showing why the Pto kinase can evade degradation induced by AvrptoB and why the Fen kinase can't. 

Scooped by Suayib Üstün
Scoop.it!

Interaction of the Arabidopsis GTPase RabA4c with Its Effector PMR4 Results in Complete Penetration Resistance to Powdery Mildew

Interaction of the Arabidopsis GTPase RabA4c with Its Effector PMR4 Results in Complete Penetration Resistance to Powdery Mildew | Plant-microbe interaction | Scoop.it

The (1,3)-β-glucan callose is a major component of cell wall thickenings in response to pathogen attack in plants. GTPases have been suggested to regulate pathogen-induced callose biosynthesis. To elucidate the regulation of callose biosynthesis in Arabidopsis thaliana, we screened microarray data and identified transcriptional upregulation of the GTPase RabA4c after biotic stress. We studied the function of RabA4c in its native and dominant negative (dn) isoform in RabA4c overexpression lines. RabA4c overexpression caused complete penetration resistance to the virulent powdery mildew Golovinomyces cichoracearum due to enhanced callose deposition at early time points of infection, which prevented fungal ingress into epidermal cells. By contrast, RabA4c(dn) overexpression did not increase callose deposition or penetration resistance. A cross of the resistant line with the pmr4 disruption mutant lacking the stress-induced callose synthase PMR4 revealed that enhanced callose deposition and penetration resistance were PMR4-dependent. In live-cell imaging, tagged RabA4c was shown to localize at the plasma membrane prior to infection, which was broken in the pmr4 disruption mutant background, with callose deposits at the site of attempted fungal penetration. Together with our interactions studies including yeast two-hybrid, pull-down, and in planta fluorescence resonance energy transfer assays, we concluded that RabA4c directly interacts with PMR4, which can be seen as an effector of this GTPase.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins - Tan - 2014 - New Phytologist - Wiley Online Library

The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins - Tan - 2014 - New Phytologist - Wiley Online Library | Plant-microbe interaction | Scoop.it
SummaryPlants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors.Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants.XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA.The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Proteasome-Mediated Processing of Nrf1 Is Essential for Coordinate Induction of All Proteasome Subunits and p97: Current Biology

Proteasome-Mediated Processing of Nrf1 Is Essential for Coordinate Induction of All Proteasome Subunits and p97: Current Biology | Plant-microbe interaction | Scoop.it

Highlights

 

•Nrf1 induces all 26S subunits and p97 upon treatment with proteasome inhibitors•Partially inhibited proteasomes process Nrf1 to allow its nuclear translocation•Complete 26S inhibition blocks Nrf1 processing and transcriptional activity•Nrf1 processing requires its deglycosylation (involving p97), then ubiquitination

 

SummaryBackground

Proteasome inhibitors are widely used in the treatment of multiple myeloma and as research tools. Additionally, diminished proteasome function may contribute to neuronal dysfunction. In response to these inhibitors, cells enhance the expression of proteasome subunits by the transcription factor Nrf1. Here, we investigate the mechanisms by which decreased proteasome function triggers production of new proteasomes via Nrf1.

Results

Exposure of myeloma or neuronal cells to proteasome inhibitors (bortezomib, epoxomicin, and MG132), but not to proteotoxic or ER stress, caused a 2- to 4-fold increase within 4 hr in mRNAs for all 26S subunits. In addition, p97 and its cofactors (Npl4, Ufd1, and p47), PA200, and USP14 were induced, but expression of immunoproteasome-specific subunits was suppressed. Nrf1 mediates this induction of proteasomes and p97, but only upon exposure to low concentrations of inhibitors that partially inhibit proteolysis. Surprisingly, high concentrations of these inhibitors prevent this compensatory response. Nrf1 is normally ER-bound, and its release requires its deglycosylation and ubiquitination. Normally ubiquitinated Nrf1 is rapidly degraded, but when partially inhibited, proteasomes carry out limited proteolysis and release the processed Nrf1 (lacking its N-terminal region) from the ER, which allows it to enter the nucleus and promote gene expression.

Conclusions

When fully active, proteasomes degrade Nrf1, but when partially inhibited, they perform limited proteolysis that generates the active form of Nrf1. This elegant mechanism allows cells to compensate for reduced proteasome function by enhancing production of 26S subunits and p97.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6

Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6 | Plant-microbe interaction | Scoop.it

ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Frontiers | Phosphoinositide-signaling is one component of a robust plant defense response | Plant-Microbe Interaction

Frontiers | Phosphoinositide-signaling is one component of a robust plant defense response | Plant-Microbe Interaction | Plant-microbe interaction | Scoop.it
The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca2+-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst)DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5 and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca2+ release, modulates defense gene expression and compromises plant defense responses.
more...
No comment yet.