Amazing Science
Find tag "astronomy"
503.7K views | +8 today
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Rescooped by Dr. Stefan Gruenwald from Good news from the Stars!

The Fastest Stars in the Universe May Approach Light Speed

The Fastest Stars in the Universe May Approach Light Speed | Amazing Science |

Merging black holes can fling stars out of galaxies at near the speed of light.

Our own sun orbits the Milky Way’s center at an impressive 450,000 mph. Recently, scientists have discovered stars hurtling out of our galaxy at a couple million miles per hour. Could there be stars moving even faster somewhere out there? After doing some calculations, Harvard University astrophysicists Avi Loeb and James Guillochon realized that yes, stars could go faster. Much faster. According to their analysis, which they describe in two papers recently posted online, stars can approach light speed. The results are theoretical, so no one will know definitively if this happens until astronomers detect such stellar speedsters—which, Loeb says, will be possible using next-generation telescopes.

But it’s not just speed these astronomers are after. If these superfast stars are found, they could help astronomers understand the evolution of the universe. In particular, they give scientists another tool to measure how fast the cosmos is expanding. Moreover, Loeb says, if the conditions are right, planets could orbit the stars, tagging along for an intergalactic ride. And if those planets happen to have life, he speculates, such stars could be a way to carry life from one galaxy to another.

It all started in 2005 when a star was discovered speeding away from our galaxy fast enough to escape the gravitational grasp of the Milky Way. Over the next few years, astronomers would find several more of what became known as hypervelocity stars. Such stars were cast out by the supermassive black hole at the center of the Milky Way. When a pair of stars orbiting each other gets close to the central black hole, which weighs about four million times as much as the sun, the three objects engage in a brief gravitational dance that ejects one of the stars. The other remains in orbit around the black hole.

Loeb and Guillochon realized that if instead you had two supermassive black holes on the verge of colliding, with a star orbiting around one of the black holes, the gravitational interactions could catapult the star into intergalactic space at speeds reaching hundreds of times those of hypervelocity stars. Papers describing their analysis have been submitted to the Astrophysical Journal and the journal Physical Review Letters.

Loeb and Guillochon calculated that merging supermassive black holes would eject stars at a wide range of speeds. Only some would reach near light speed, but many of the rest would still be plenty fast. For example, Loeb says, the observable universe could have more than a trillion stars moving at a tenth of light speed, about 67 million miles per hour.

Because a single, isolated star streaking through intergalactic space would be so faint, only powerful future telescopes like the James Webb Space Telescope, planned for launch in 2018, would be able to detect them. Even then, telescopes would likely only see the stars that have reached our galactic neighborhood. Many of the ejected stars probably would have formed near the centers of their galaxies, and would have been thrown out soon after their birth. That means that they would have been traveling for the vast majority of their lifetimes. The star’s age could therefore approximate how long the star has been traveling. Combining travel time with its measured speed, astronomers can determine the distance between the star’s home galaxy and our galactic neighborhood.

If astronomers can find stars that were kicked out of the same galaxy at different times, they can use them to measure the distance to that galaxy at different points in the past. By seeing how the distance has changed over time, astronomers can measure how fast the universe is expanding.

Via Guillaume Decugis
Guillaume Decugis's curator insight, December 11, 2014 11:41 PM
But don't count on it yet as a means of locomotion.
Scooped by Dr. Stefan Gruenwald!

It's not all about aliens – listening project may unveil other secrets of the universe

It's not all about aliens – listening project may unveil other secrets of the universe | Amazing Science |

The Search for Extraterrestrial Intelligence (SETI) project got a $100 million boost this week from Russian billionaire Yuri Milner. While this may seem like a lot of money to spend on a nearly impossible task, many astronomers welcome the investment. The cash will go some way to help save some observatories from closure and allow astronomers to continue to use the facilities for astrophysics research alongside SETI.

The “Breakthrough Listen” initiative, announced on July 20 at the Royal Society in London, will pay for giant radio telescopes at Green Bank in West Virginia, USA and the Parkes Observatory in Australia to scan the skies for signs of alien communications. The Lick Observatory’s optical telescope in San Jose, California will also join the search with the goal of scanning one million stars in our Milky Way galaxy along with a hundred other nearby galaxies. In the UK, the giant Lovell telescope at Jodrell Bank is also involved in SETI programs.

The funding, to be allocated over a decade, will pay for thousands of hours per year on these facilities compared to the tens of hours usually available to SETI scientists competing with other astronomical programmes. Frank Drake, one of the pioneers of modern SETI and a member of the Breakthrough Listen team, has described previous support for SETI research as patchy. The total worldwide support in recent years has been only about $500,000 from private gifts.

The telescopes will look for signals that cannot easily be explained by natural phenomena. A repeating signal could be be promising, although caution is needed; in 1967, Northern Irish astrophysicist Jocelyn Bell Burnell discovered mysterious regular and repeating pulses of radio emission. However the source of this emission, which she nicknamed Little Green Man 1 (LGM-1), turned out to be the first discovery of a pulsar – highly magnetised dense rotating neutron stars. These are recognised today as nature’s most accurate clocks and their discovery has certainly not been a waste of time.

The Breakthrough Listen project will scan stars for signals in the frequency range of 1 to 10 gigahertz (GHz), a band identified as a good choice for communication. That is because radio signals at these frequencies can travel through the universe and the Earth’s atmosphere relatively unimpeded. Light at lower frequencies is difficult to distinguish from the astrophysical background and higher frequencies are more easily absorbed by intervening gas in the cosmos and the Earth’s atmosphere.

The injection of cash is a lifeline for struggling observatories. The Parkes radio telescope, famous for beaming images of Armstrong’s moon walk, was threatened with closure by 2016, as the Australian government redirected funding into development of the upcoming Square Kilometer ArrayThe Greenbank telescope – the world’s largest steerable radio telescope – was under similar threat, with closure projected for 2017 unless new funding partners could be found.

These telescopes will now be trained on the sky and will gather vast amounts of data that will be made available through the SETI@home downloadable screen saver. This will allow the general public to help crunch the data in order to search for tell-tale signatures of intelligent extraterrestrial communications.

In 1959, two scientists – Philip Morrison and Guiseppe Cocconi – were the first to suggest technologically advanced alien civilisations might use electromagnetic radiation to communicate. Shortly after that, Frank Drake made the first search for alien radio signals using a previous generation of giant radio telescope in Greenbank and formulated an equation that suggested there could be ten civilisations in the Milky Way that we should be able to communicate withThe new funding will allow SETI scientists to thoroughly scan a wider range of frequencies for the next ten years, where previous efforts involved intermittent and irregular eavesdropping sessions. While scientists are hopeful that they will make a positive detection, a negative result from such a comprehensive search will be equally important. To date we have only searched a minute portion of the universe, so it is definitely worth continuing to do so. However, if we fail to find anything after the more detailed search, we may want to think about other ways of looking for alien life.

But to find a needle in a haystack, one has to look further than the first stalk of hay. The data will also be useful for astrophysicists interested in naturally occurring cosmic radio emission. Many new pulsars may be found along with enigmatic fast radio bursts – brief flashes of very intense radio emission that lasts for only a fraction of a second. Such bursts were discovered in 1997 with the Parkes telescope and their origin is still a mystery. Data from the listening project could help solve this mystery.

This is an exciting time to systematically survey a large number of stars. We know that planets are common around a range of different types of stars thanks to recent ground and space-based missions such as NASA’s Kepler satellite, which have revolutionised our ability to find other worlds. At the same time, solar system missions have found evidence of life-enabling water on planets other than Earth. While it may seem a big jump to finding intelligent and communicative extraterrestrials, this new investment may prove to be the turning point for SETI. In turn, plans are already in place to figure out how to respond if we are not alone – Milner plans to run a competition with a prize of $1m to find the best digital message to transmit back.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Why we live on Earth and not Venus

Why we live on Earth and not Venus | Amazing Science |

Compared to its celestial neighbours Venus and Mars, Earth is a pretty habitable place. So how did we get so lucky? A new study sheds light on the improbable evolutionary path that enabled Earth to sustain life.

The research, published this week in Nature Geoscience, suggests that Earth’s first crust, which was rich in radioactive heat-producing elements such as uranium and potassium, was torn from the planet and lost to space when asteroids bombarded the planet early in its history. This phenomenon, known as impact erosion, helps explain a landmark discovery made over a decade ago about the Earth’s composition.

Researchers with the University of British Columbia and University of California, Santa Barbara say that the early loss of these two elements ultimately determined the evolution of Earth's plate tectonics, magnetic field and climate.

"The events that define the early formation and bulk composition of Earth govern, in part, the subsequent tectonic, magnetic and climatic histories of our planet, all of which have to work together to create the Earth in which we live," said Mark Jellinek, a professor in the Department of Earth, Ocean & Atmospheric Sciences at UBC.

"It's these events that potentially differentiate Earth from other planets." On Earth, shifting tectonic plates cause regular overturning of Earth's surface, which steadily cools the underlying mantle, maintains the planet's strong magnetic field and stimulates volcanic activity. Erupting volcanoes release greenhouse gases from deep inside the planet and regular eruptions help to maintain the habitable climate that distinguishes Earth from all other rocky planets.

Venus is the most similar planet to Earth in terms of size, mass, density, gravity and composition. While Earth has had a stable and habitable climate over geological time, Venus is in a climate catastrophe with a thick carbon dioxide atmosphere and surface temperatures reaching about 470 C. In this study, Jellinek and Matt Jackson, an associate professor at the University of California, explain why the two planets could have evolved so differently.

"Earth could have easily ended up like present day Venus," said Jellinek. "A key difference that can tip the balance, however, may be differing extents of impact erosion." With less impact erosion, Venus would cool episodically with catastrophic swings in the intensity of volcanic activity driving dramatic and billion-year-long swings in climate.

"We played out this impact erosion story forward in time and we were able to show that the effect of the conditions governing the initial composition of a planet can have profound consequences for its evolution. It's a very special set of circumstances that make Earth."

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Are we alone? The search for alien life gathers pace

Are we alone? The search for alien life gathers pace | Amazing Science |

Earlier this week in London the billionaire physics enthusiast Yuri Milner joined forces with some of the biggest names in astronomy and astrophysics to announce a $100m initiative to search for signs of intelligent life on planets other than Earth. The money will be used to buy time on a number of telescopes to search for radio and optical signals created by alien civilizations.

Called Breakthrough Listen, the project will survey one million of the closest stars to Earth and will also scan the centre of our galaxy and the entire galactic plane. Beyond the Milky Way, the telescope will also scrutinize the 100 closest galaxies for intelligent life.

Searching for intelligent life is one thing, but what if we actually find something? A related initiative called Breakthrough Message involves a $1m competition to compose a message to other worlds that could be broadcast from Earth. However, there is a very important caveat: “This initiative is not a commitment to send messages. It’s a way to learn about the potential languages of interstellar communication and to spur global discussion on the ethical and philosophical issues surrounding communication with intelligent life beyond Earth.”

Who are we? A mature civilization, like a mature individual, must ask itself this question. Is humanity defined by its divisions, its problems, its passing needs and trends? Or do we have a shared face, turned outward to the Universe?

In 1990, Voyager 1 swiveled its camera and captured the ‘Pale Blue Dot’ - an image of Earth from six billion kilometers away. It was a mirror held up to our planet - home of water, life, and minds. A reminder that we share something precious and rare.

But how rare, exactly? The only life? The only minds? For the last half-century, small groups of scientists have listened valiantly for signs of life in the vast silence. But for government, academia, and industry, cosmic questions are astronomically far down the list of priorities. And that lengthens the odds of finding answers. It is hard enough to comb the Universe from the edge of the Milky Way; harder still from the edge of the public consciousness.

Yet millions are inspired by these ideas, whether they meet them in science or science fiction. Because the biggest questions of our existence are at stake. Are we the Universe’s only child - our thoughts its only thoughts? Or do we have cosmic siblings - an interstellar family of intelligence? As Arthur C. Clarke said, “In either case the idea is quite staggering.” That means the search for life is the ultimate ‘win-win’ endeavor. All we have to do is take part.

Today we have search tools far surpassing those of previous generations. Telescopes can pick out planets across thousands of light years. The magic of Moore’s law lets our computers sift data orders of magnitude faster than older mainframes - and ever quicker each year. These tools are now reaping a harvest of discoveries. In the last few years, astronomers and the Kepler Mission have discovered thousands of planets beyond our solar system. It now appears that most stars host a planetary system. Many of them have a planet similar in size to our own, basking in the ‘habitable zone’ where the temperature permits liquid water. There are likely billions of earth-like worlds in our galaxy alone. And with instruments now or soon available, we have a chance of finding out if any of these planets are true Pale Blue Dots – home to water, life, even minds.

There has never been a better moment for a large-scale international effort to find life in the Universe. As a civilization, we owe it to ourselves to commit time, resources, and passion to this quest.

But as well as a call to action, this is a call to thought. When we find the nearest exo-Earth, should we send a probe? Do we try to make contact with advanced civilizations? Who decides? Individuals, institutions, corporations, or states? Or can we as species - as a planet - think together?

Three years ago, Voyager 1 broke the sun’s embrace and entered interstellar space. The 20th century will be remembered for our travels within the solar system. With cooperation and commitment, the present century will be the time when we graduate to the galactic scale, seek other forms of life, and so know more deeply who we are.

Life on other planets is also front-and-centre here on, where we have just published a podcast interview with exoplanet expert Sara Seager of the Massachusetts Institute of Technology. Seager explains why astronomers are looking forward to using the next generation of telescopes, which should be capable of scanning the atmospheres of some exoplanets for signs of life.

Earlier this week Prof Seager was asked about Milner’s initiative. “This is an astonishing level of funding seeming to come out of the blue from a single individual,” she said, adding “It’s time we all took more risks in science.”

Hopefully other Billionaires pick up on this model and spend some of their fortune on the biggest question of mankind.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Gaseous C60 Carbon Buckyballs May Be Ubiquitous in Space

Gaseous C60 Carbon Buckyballs May Be Ubiquitous in Space | Amazing Science |
"Buckyball" molecules appear to be commonplace across the universe, and may even be sources of organic molecules that are key to the origin and evolution of life, a new study suggests.

Nearly 100 years ago, astronomers began spotting unknown absorption bands associated with the  interstellar gas and dust of the Milky Way and other galaxies. More than 400 of these "diffuse interstellar bands" have been found to date, and their cause is "often cited as the biggest enigma of observational astronomy," study co-author John Maier, a spectroscopist and chemical physicist at the University of Basel in Switzerland, told

In 1994, researchers suggested that some of these absorption bands might arise from buckyballs, which are cagelike spheres also known as C60, since each molecule is made up of 60 carbon atoms. 

Buckyballs, also known as fullerenes, are named after their resemblance to the architect Buckminster Fuller's geodesic domes, a giant example of which is found at the entrance to Disney World's Epcot theme park in Florida. Discovered in 1985, buckyballs are about 1 nanometer in size, or about one ten-thousandth the average diameter of a human hair.

Five years ago, scientists confirmed that buckyballs exist in space around stars. Now, Maier and his colleagues have found the first unambiguous evidence that buckyballs exist in the interstellar medium between stars in the Milky Way. 

In the lab, the researchers created a positively charged version of C60 known as C60+, which can form when buckyballs are bombarded with radiation. They cooled a gas of C60+ to the kind of temperatures found in deep space — about minus 449 degrees Fahrenheit (minus 267 degrees Celsius). They next tested what C60+'s absorption bands were. Altogether, this project took 20 years, Maier said.

The researchers found that buckyballs are responsible for two diffuse interstellar bands, marking the first time investigators have identified a culprit behind any of these mysterious features. "The whole mystery has not been solved, but perhaps this is the beginning," Maier said.

Previous research suggested buckyballs are created in dying stars and pushed out into planetary nebulas. These new findings suggest buckyballs ultimately make their way into diffuse clouds that provide the seeds for the formation of new stars. "C60+ may well be ubiquitous in space and stable in very hostile environments," Maier said. "Buckyballs may even be the precursors of important organic molecules necessary for the formation of life on planets."

Future research can investigate whether other diffuse interstellar bands are caused by buckyballs laced with metals and other elements, Maier said. The scientists detailed their findings in online Wednesday (July 15) in the journal Nature.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Why is life left-handed? The answer is in the stars

Why is life left-handed? The answer is in the stars | Amazing Science |
Researchers have created a star-forming cloud in the laboratory to try to recreate the first-ever biological molecule. The study could explain why such molecules are left-handed.

While most humans are right-handed, our proteins are made up of lefty molecules. In the same way your left and right hands mirror one another, molecules can assemble in two reflected structures. Life prefers the left-handed version, which is puzzling since both mirrored types form equally in the laboratory. But a new study suggests that this may be because the star-forming cloud that created the first-ever biological molecule, before our sun was even born, made it left-handed.

In 2004, NASA’s Stardust spacecraft swept through the nebulous halo surrounding a comet. What it found was the simplest of life’s building blocks: the amino acid glycine. Comets are frozen remnants from the earliest days in our solar system. Their material is therefore not made in planets, but likely originates in the natal gas cloud that formed our sun.

research team recently recreated the freezing conditions inside such a star-forming cloud. In apparatus sealed completely from the already crisp air in the laboratory, the temperature can be brought down to -263 degrees Celsius, just ten degrees above absolute zero where even molecules stop vibrating. They believed that on the surface of dust grains suspended in this chilly gas, glycine may have undergone a change that made it left-handed.

At the core of the glycine molecule is a carbon atom with four bonds. If two of these bonds attach to hydrogen atoms, then the molecule is symmetric and neither right nor left handed. However, swap a hydrogen for a heavier atom and this symmetry is broken. The molecule can then form two mirrored versions, giving it handedness or “chirality” as it is called in chemistry.

The experiments suggest that a glycine hydrogen atom could be displaced by an atom of deuterium, which is a heavier version of hydrogen that contains an extra neutron in its nucleus, doubling its weight. It is abundant inside star-forming clouds, which is why they create many deuterium-enriched compounds, including heavy water. Once a deuterium atom has replaced a hydrogen, it is very hard to dislodge. This means that the fraction of chiral glycine steadily increases, until the main species of glycine inside the cloud shows left or right handedness.

Chiral glycine is very similar to original glycine, but with an important extra property. Laboratory experiments have shown that chiral glycine is a catalyst for other chiral molecules. That is, it promotes the production of other species with the same handedness as itself. The result is that if glycine became a left-handed molecule, then future biological molecules would also be predominantly left-handed. When life developed on Earth, it would therefore build from a pool of left-handed molecules, giving it the bias we observe today.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Latest dispatch from Pluto reveals frozen plains, icy hills and more

Latest dispatch from Pluto reveals frozen plains, icy hills and more | Amazing Science |

Frozen plains, etched with a network of polygons bordered by shallow troughs, stretch away from Pluto’s icy mountains and through Pluto’s “heart.” Some troughs are filled with dark material, possibly irradiated hydrocarbons, while others are home to icy hills, New Horizons mission scientists announced at a July 17, 2015 news conference. As with everything else coming from Pluto, planetary scientists are still at the scratching-their-heads phase.

“When I first saw the plains, I called it the ‘not-easy-to-explain’ terrain,” said Jeff Moore, a planetary scientist at the NASA Ames Research Center in Moffett Field, Ca. The polygons are roughly 20 to 30 kilometers across. One idea is that the surface there is like a boiling pot of oatmeal, Moore said. Heat welling up from below might be pushing up bubbles in the ice. Alternatively, they could be more like mud cracks seen on Earth that are formed by a contracting surface.

Within some of the cracks sit clusters of hills. It’s not clear yet how high they are — or how they got there. They might have been thrust up or perhaps they’ve been whittled away by erosion. “We don’t know which is correct,” Moore says.

Images with even higher resolution, along with stereo photography, are yet to come. “This is just a taste of what’s in the unsent data,” Moore says. The team has also gotten their first good look at the small moon Nix, which the scientists now know to be 40 kilometers across. While it looks round in images, mission leader Alan Stern said that the team suspects the moon is actually elongated and we’re just “looking down the barrel” at one of the poles.

Early atmospheric data also show hints of a nitrogen tail stretching away from Pluto in the direction opposite the sun. The solar wind of electrons and protons could ionize and sweep up nitrogen escaping from the dwarf planet and blow it away, much like how a comet grows a tail as it nears the sun.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Astronomers find a massive black hole that outgrew its galaxy

Astronomers find a massive black hole that outgrew its galaxy | Amazing Science |

Astronomers have spotted a super-sized black hole in the early universe that grew much faster than its host galaxy. The discovery runs counter to most observations about black holes, which are massive areas of space with extraordinarily strong gravity that can pull in anything — even light. In most cases, black holes and their host galaxies expand at the same rate.

This particular black hole formed in the early universe, roughly two billion years after the Big Bang. An international research group made the discovery during a project to map the growth of supermassive black holes across cosmic time. The team included astronomers from Yale University, ETH Zurich, the Max-Planck Institute in Germany, Harvard University, the University of Hawaii, INAF-Osservatorio Astronomico di Roma, and Oxford University.

“Our survey was designed to observe the average objects, not the exotic ones,” said C. Megan Urry, Yale’s Israel Munson Professor of Astrophysics and co-author of a study about the phenomenon in the journal Science. “This project specifically targeted moderate black holes that inhabit typical galaxies today. It was quite a shock to see such a ginormous black hole in such a deep field.”

Deep-field surveys are intended to look at faint galaxies; they point at small areas of the sky for a longer period of time, meaning the total volume of space being sampled is relatively small. This particular black hole, located in the galaxy CID-947, is among the most massive black holes ever found. It measures nearly 7 billion solar masses.

However, it was the mass of the surrounding galaxy that most surprised the research team. “The measurements correspond to the mass of a typical galaxy,” said lead author Benny Trakhtenbrot, a researcher at ETH Zurich’s Institute for Astronomy. “We therefore have a gigantic black hole within a normal-size galaxy.”

Most galaxies, including our own Milky Way, have a black hole at their center, holding millions to billions of solar masses. Not only does the new study challenge previous notions about the way host galaxies grow in relation to black holes, it also challenges earlier suggestions that the radiation emitted by expanding black holes curtails the creation of stars.

Stars were still forming in CID-947, the researchers said, and the galaxy could continue to grow. They said CID-947 could be a precursor of the most extreme, massive systems observed in today’s local universe, such as the galaxy NGC 1277 in the Perseus constellation, 220 million light years from the Milky Way. But if so, they said, the growth of the black hole still greatly anticipated the growth of the surrounding galaxy, contrary to what astronomers thought previously.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

New Horizons Spacecraft Displays Pluto’s Big Heart

New Horizons Spacecraft Displays Pluto’s Big Heart | Amazing Science |

Three billion miles away, Pluto has sent a “love note” back to Earth, via NASA's New Horizons spacecraft.  At about 4 p.m. EDT on July 13 - about 16 hours before closest approach -  New Horizons captured this stunning image of one of Pluto's most dazzling and dominant features. The “heart,” estimated to be 1,000 miles (1,600 kilometers) across at its widest point rests just above the equator. (The angle of view displays mostly the northern hemisphere.) The heart’s diameter is about the same distance as from Denver to Chicago, in America’s heartland.  

“Wow!” said New Horizons principal investigator Alan Stern, Southwest Research Institute, Boulder, Colorado, as the image was unveiled before the New Horizons science team at Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. “My prediction was that we would find something wonderful, and we did. This is proof that good things really do come in small packages.”

The newest image from the Long Range Reconnaissance Imager (LORRI) shows an almost perfectly shaped left half of a bright, heart-shaped feature centered just above Pluto’s equator, while the right side of the heart appears to be less defined. 

The image shows for the first time that some surfaces on Pluto are peppered with impact craters and are therefore relatively ancient, perhaps several billion years old.  Other regions, such as the interior of the heart, show no obvious craters and thus are probably younger, indicating that Pluto has experienced a long and complex geological history. Some craters appear partially destroyed, perhaps by erosion. There are also hints that parts of Pluto’s crust have been fractured, as indicated by the series of linear features to the left of the heart.

Below the heart are dark terrains along Pluto’s equator, including, on the left, the large dark feature informally known as the “whale.” Craters pockmark part of the whale’s head; areas that appear smooth and featureless may be a result of image compression.

New Horizons traveled nearly a decade to receive its summer valentine, launching on January 19, 2006. This is just the latest in a series of the New Horizons Pluto "picture show."  On Wednesday July 15, more images of surface close-ups will make the more than four-hour journey to Earth at the speed of light to give Pluto fans details as small as New York’s Central Park.

“Our data tomorrow (Wednesday, July 15) will have ten times the resolution of what we see today and it will knock your socks off,” said Stern. Curt Niebur, New Horizons program scientist with NASA Headquarters in Washington notes, “The science is amazing, but the team’s excitement reminds me of why we really do this.”

At 7:49 AM EDT on Tuesday, July 14 New Horizons sped past Pluto at 30,800 miles per hour (49,600 kilometers per hour), with a suite of seven science instruments. As planned, New Horizons went incommunicado as it hurtled through the Pluto-Charon system busily gathering data. The New Horizons team will breathe a sigh of relief when New Horizons “phones home” at approximately 9:02 p.m. EDT on July 14. The mission to the icy dwarf planet completes the initial reconnaissance of the solar system.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

NASA's Swift Reveals a Black Hole Bull's-eye

NASA's Swift Reveals a Black Hole Bull's-eye | Amazing Science |
What looks like a shooting target is actually an image of nested rings of X-ray light centered on an erupting black hole. On June 15, NASA's Swift satellite detected the start of a new outburst from V404 Cygni, where a black hole and a sun-like star orbit each other. Since then, astronomers around the world have been monitoring the ongoing light show.  

On June 30, a team led by Andrew Beardmore at the University of Leicester, U.K., imaged the system using the X-ray Telescope aboard Swift, revealing a series concentric rings extending about one-third the apparent size of a full moon. A movie made by combining additional observations acquired on July 2 and 4 shows the expansion and gradual fading of the rings.

Astronomers say the rings result from an "echo" of X-ray light. The black hole's flares emit X-rays in all directions. Dust layers reflect some of these X-rays back to us, but the light travels a longer distance and reaches us slightly later than light traveling a more direct path. The time delay creates the light echo, forming rings that expand with time.   

Detailed analysis of the expanding rings shows that they all originate from a large flare that occurred on June 26 at 1:40 p.m. EDT. There are multiple rings because there are multiple reflecting dust layers between 4,000 and 7,000 light-years away from us. Regular monitoring of the rings and how they change as the eruption continues will allow astronomers to better understand their nature.

"The flexible planning of Swift observations has given us the best dust-scattered X-ray ring images ever seen," Beardmore said. "With these observations we can make a detailed study of the normally invisible interstellar dust in the direction of this black hole."

V404 Cygni is located about 8,000 light-years away. Every couple of decades the black hole fires up in an outburst of high-energy light. Its previous eruption ended in 1989.

The investigating team includes scientists from the Universities of Leicester, Southampton, and Oxford in the U.K., the University of Alberta in Canada, and the European Space Agency in Spain.

Swift was launched in November 2004 and is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Goddard operates the spacecraft in collaboration with Penn State University in University Park, Pennsylvania, the Los Alamos National Laboratory in New Mexico and Orbital Sciences Corp. in Dulles, Virginia. International collaborators are located in the United Kingdom and Italy. The mission includes contributions from Germany and Japan.
No comment yet.
Rescooped by Dr. Stefan Gruenwald from Eldritch Weird!

A nearby black hole just erupted for the first time in 26 years and scientists are ecstatic

A nearby black hole just erupted for the first time in 26 years and scientists are ecstatic | Amazing Science |
They're calling it a once-in-a-lifetime opportunity.

Lurking 8,000 light years from Earth is a black hole 12 times more massive than our sun. It's been peacefully sleeping for 26 years. But on June 15, astronomers detected something signaling that it had woken up.

Now, scientists around the world are using highly sophisticated instruments to learn as much as they can about this mysterious beast of nature before the black hole returns to its slumber, which will be soon.

Black holes are very dense, massive objects in space that have an immensely powerful gravitational field that traps anything and everything that comes too close, including light. But on occasion they'll spit out material as well as suck it in.

On June 15, one of NASA's satellites picked up a torrent of x-rays all coming from a single source: the black hole."Relative to the lifetime of space observatories, these black hole eruptions are quite rare," said Neil Gehrels, the principal investigator for Swift, the NASA satellite that first identified the eruption in a NASA press release. "So when we see one of them flare up, we try to throw everything we have at it, monitoring across the spectrum, from radio waves to gamma rays."

Juan Carlos Cañadilla's curator insight, July 11, 7:33 AM

They're calling it a once-in-a-lifetime opportunity.

Scooped by Dr. Stefan Gruenwald!

Biggest explosions in the universe are powered by strongest magnets

Biggest explosions in the universe are powered by strongest magnets | Amazing Science |
Observations have for the first time demonstrated a link between a very long-lasting burst of gamma rays and an unusually bright supernova explosion. The results show that the supernova was not driven by radioactive decay, as expected, but was instead powered by the decaying super-strong magnetic fields around an exotic object called a magnetar.

Gamma-ray bursts are one of the outcomes associated with the biggest explosions to have taken place since the Big Bang. They are detected by orbiting telescopes that are sensitive to this type of high-energy radiation, which cannot penetrate the Earth's atmosphere, and then observed at longer wavelengths by other telescopes both in space and on the ground. GRBs usually only last a few seconds, but in very rare cases the gamma rays continue for hours [1]. One such ultra-long duration GRB was picked up by the [Swift satellite]  on 9 December 2011 and named GRB 111209A. It was both one of the longest and brightest GRBs ever observed.

As the afterglow from this burst faded it was studied using both the GROND instrument on the MPG/ESO 2.2-metre telescope at La Silla and also with the X-shooter instrument on the [Very Large Telescope] (VLT) at Paranal. The clear signature of a supernova, later named SN 2011kl, was found. This is the first time that a supernova has been found to be associated with an ultra-long GRB [2].

The lead author of the new paper, Jochen Greiner from the Max-Planck-Institut für extraterrestrische Physik , Garching, Germany explains: "Since a long-duration gamma-ray burst is produced only once every 10,000-100,000 supernovae, the star that exploded must be somehow special. Astronomers had assumed that these GRBs came from very massive stars -- about 50 times the mass of the Sun -- and that they signalled the formation of a black hole. But now our new observations of the supernova SN 2011kl, found after the GRB 111209A, are changing this paradigm for ultra-long duration GRBs."

In the favored scenario of a massive star collapse (sometimes known as a collapsar) the week-long burst of optical/infrared emission from the supernova is expected to come from the decay of radioactive nickel-56 formed in the explosion [3]. But in the case of GRB 111209A the combined GROND and VLT observations showed unambiguously for the first time that this could not be the case [4]. Other suggestions were also ruled out [5].

  1. Normal long-duration GRBs last between 2 and 2000 seconds. There are now four GRBs known with durations between 10,000-25,000 seconds -- these are called ultra-long GRBs. There is also a distinct class of shorter-duration GRBs that are believed to be created by a different mechanism.
  2. The link between supernovae and (normal) long-duration GRBs was established initially in 1998, mainly by observations at ESO observatories of the supernova SN 1998bw, and confirmed in 2003 with GRB 030329.
  3. The GRB itself is thought to be powered by the relativistic jets produced by the star's material collapsing onto the central compact object via a hot, dense accretion disc.
  4. The amount of nickel-56 measured in the supernova with the GROND instrument is much too large to be compatible with the strong ultraviolet emission as seen with the X-shooter instrument.
  5. Other suggested sources of energy to explain superluminous supernovae were shock interactions with the surrounding material -- possibly linked to stellar shells ejected before the explosion -- or a blue supergiant progenitor star. In the case of SN 2011kl the observations clearly exclude both of these options.
  6. Pulsars make up the most common class of observable neutron stars, but magnetars are thought to develop magnetic field strengths that are 100 to 1000 times greater than those seen in pulsars.
No comment yet.
Rescooped by Dr. Stefan Gruenwald from Research Workshop!

Spectrum of life: Nonphotosynthetic pigments could be biosignatures of life on other worlds

Spectrum of life: Nonphotosynthetic pigments could be biosignatures of life on other worlds | Amazing Science |
To find life in the universe, it helps to know what it might look like. If there are organisms on other planets that do not rely wholly on photosynthesis—as some on Earth do not—how might those worlds appear from light-years away?

Pigments that absorb light are helpful to Earthly organisms in ways other than just producing energy. Some protect against the sun's radiation or have antioxidants to help the organism survive extreme environments such as salt concentrations, high temperatures or acidity. There are even photosynthetic pigments that do not produce oxygen at all.

chwieterman and Meadows then plugged their results Virtual Planetary Laboratory spectral models—which include the effects of the atmosphere and clouds—to simulate hypothetical planets with surfaces covered to varying degrees with such organisms. "With those models we could determine the potential detectability of those signatures," he said.

Exoplanets are much too far away to observe in any detail; even near-future telescopes will deliver light from such distant targets condensed to a single pixel. So even a strong signal of nonphotosynthetic pigments would be seen at best only in the "disk average," or average planetary brightness in the electromagnetic spectrum, Schwieterman said. "This broader perspective might allow us to pick up on something we might have missed or offer an additional piece of evidence, in conjunction with a gaseous biosignature like oxygen, for example, that a planet is inhabited," Schwieterman said.

The UW-based planetary lab has a growing database of spectra and pigments of nonphotosynthetic organisms and more that is available to the public, and to which data from this project have been added.

Schwieterman said much work remains to catalog the range of spectral features that life on Earth produces and also to quantify how much of a planetary surface could conceivably be covered with pigmented organisms of any type.

Via Jocelyn Stoller
No comment yet.
Scooped by Dr. Stefan Gruenwald!

The scorching winds on the surface of the sun range from 500,000 to 2,000,000 mph, and how we forecast them

The scorching winds on the surface of the sun range from 500,000 to 2,000,000 mph, and how we forecast them | Amazing Science |
It's the windiest place in the entire solar system – and these storms can be felt here on Earth.

The most extreme weather of all rarely gets a mention, even in the UK where we’re famous for our weather talk. Far above our heads the Earth is regularly hit by colossal, tsunami-like waves of scorching gas and savage, supersonic winds from space. The culprit for this extra-terrestrial weather is sat at the centre of our solar system. The familiar pictures of our Sun that portray a plain, incandescent orb, serenely holding the planets in place, couldn’t be further from the truth. The Sun is a rowdy place.

One of the most spectacular forms of space weather are Coronal Mass Ejections, where the Sun sporadically throws out billions of tons of hot gas and magnetic field into space.  The Sun also generates its own wind, which ranges from “breezes” to “hurricanes”. It’s all on a much bigger scale though – even average solar winds are much more ferocious than anything we could ever experience, with speeds varying between a gentle 500,000 miles per hour to a gusty 2,000,000 mph. These winds carry with them a part of the Sun’s atmosphere, a million-℃ gas composed of highly energetic electrons, protons and alpha particles. The winds are accelerated along the sun’s outstretched, tentacle-like magnetic field, which originates deep under its surface and extends out past Earth to the edges of the solar system.

Being able to forecast the solar wind has its problems though. For example, we know they predominantly originate in darker, less dense patches of the Sun’s atmosphere known as coronal holes, however we are still unable to locate the other significant sources that must contribute to the wind. More importantly, we don’t have a clear explanation of how the winds are heated and accelerated.

In a recent study published in the journal Nature Communications, scientists investigate powerful magnetic waves, known as Alfvén waves, located in the regions where the solar wind originates. These waves cause the Sun’s magnetic field to violently sway back and forth at tens of thousands of miles per hour, transporting energy around the star’s atmosphere and out into space. It is this role as a magnetic energy carrier that means the Alfvén waves are often responsible for accelerating the solar wind to such monstrous speeds.

The researchers found that some of the necessary conditions exist for the waves to break down their energy to smaller scales and supply some of it to the wind (potentially via the interactions of the waves with particles) – something predicted for a couple of decades but never observed. Future studies of Alfvén waves should reveal how much energy they feed to the solar wind and may even allow us to forecast wind speeds.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Did Ancient Mars Have Continents and an Ocean?

Did Ancient Mars Have Continents and an Ocean? | Amazing Science |

NASA's Mars rover Curiosity has detected Red Planet rocks similar to Earth's oldest continental crust. The discovery suggests that ancient Mars may have been more similar to ancient Earth than previously thought, researchers said. Observations of the Martian atmosphere suggest the Red Planet once had an ocean that covered a fifth of its surface. Most of that water was later lost to space.

With the help of a rock-zapping laser, NASA's Mars rover Curiosity has detected Red Planet rocks similar to Earth's oldest continental crust, researchers say. This discovery suggests that ancient Mars may have been more similar to ancient Earth than previously thought, scientists added. Earth is currently the only known planet whose surface is divided into continents and oceans. The continents are composed of a thick, buoyant crust rich in silica, whereas the seafloor is made up of comparatively thin, dense crust rich in silica-poor basaltic rock.

Previously, scientists had suggested that the continental crust may be unique to Earth. The silica-rich rock, the idea goes, resulted from complex activity in the planet's interior potentially related to the onset of plate tectonics — when the plates of rock making up Earth's exterior began drifting over the planet's mantle layer.  In contrast, analyses of images snapped by Mars-orbiting spacecraft and studies of meteorites from the Red Planet previously suggested that the Martian crust was made up primarily of basaltic rock.

Now researchers have found that silica-rich rock much like the continental crust on Earth may be widespread at the site where Curiosity landed on Mars in August 2012. 

"Mars is supposed to be a basalt-covered world," study lead author Violaine Sautter, a planetary scientist at France's Museum of Natural History in Paris, told The findings are "quite a surprise," she added.

Sautter and her colleagues analyzed data from 22 rocks probed by Curiosity as the six-wheeled robot wandered ancient terrain near Gale Crater. This 96-mile-wide (154 kilometers) pit formed about 3.6 billion years ago when a meteor slammed into Mars, and the age of the rocks from this area suggests they could help shed light on the earliest period of the Red Planets, scientists said.

The 22 rocks the researchers investigated were light-colored, contrasting with the darker basaltic rock found in younger regions on Mars. They probed these rocks using the rock-zapping laser called ChemCamon Curiosity, which analyzes the light emitted by zapped materials to determine the chemistry of Martian rocks.

The scientists found these light-colored rocks were rich in silica. A number of these were similar in composition to some of Earth's oldest preserved continental crust. Sautter noted that recent orbiter and rover missions had also spotted isolated occurrences of silica-rich rock. The researchers suggest these silica-rich rocks might be widespread remnants of an ancient crust on Mars that was analogous to Earth's early continental crust and is now mostly buried under basalt. 

The researchers added that the early geological history of Mars might be much more similar to that of Earth than previously thought. Future research could investigate whether the marked differences between Mars' smooth northern hemisphere and rough, heavily cratered southern hemisphere might be due to plate tectonics, Sautter said.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from Limitless learning Universe!

Earth2.0: What we know about Kepler 452b, Earth's 'closest cousin yet'

Earth2.0: What we know about Kepler 452b, Earth's 'closest cousin yet' | Amazing Science |
Nasa scientists have announced the discovery of Kepler 452b, also known as 'Earth 2.0', an earth-like planet in our galaxy. Over the course of years of data-gathering by the Kepler space telescope and even more analysis and work here on Earth, scientists confirmed the existence of the distant exoplanet, which is the most earth-like planet ever discovered.

Although the planet is far too far away to photograph, advanced Nasa technology means we know a surprising amount about this 'New Earth'.

The planet Kepler-452b is the first near-Earth-size world to be found in the habitable zone of star that is similar to our sun. The habitable zone is a region around a star where temperatures are right for water to pool on the surface.

Scientists do not know if Kepler-452b can support life or not at this time. What is known about the planet is that it is about 60% larger than Earth, placing it in a class of planets dubbed "super-Earths." While its mass and composition are not yet determined, previous research suggests that planets the size of Kepler-452b have a better than even chance of being rocky.

Kepler-452b orbits its star every 385 days. The planet's star is about 1,400 light-years away in the constellation Cygnus. It is a G2-type star like our sun, with nearly the same temperature and mass. This star is 6 billion years old, 1.5 billion years older than our sun. As stars age, they grow in size and give out more energy, warming up their planets over time.

Today Kepler-452b is receiving 10 percent more energy from its parent star than the Earth is from the Sun. If Kepler-452b had the same mass as Earth it would be on the verge of experiencing the runaway greenhouse effect and the loss of its water inventory.

However, since it is 60 percent bigger than Earth, it is likely to be approximately five Earth masses, which provides additional protection from the runaway greenhouse effect for another 500 million years. Kepler-452b has spent six billion years in the habitable zone of its star; longer than Earth.

Since Kepler launched in 2009, twelve planets less than twice the size of Earth have been discovered in the habitable zones of their stars. There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog - an increase of 521 since the release of the previous catalog in Jan. 2015. 

Via CineversityTV
No comment yet.
Scooped by Dr. Stefan Gruenwald!

NASA: Intrigued scientists take a second look at strange looking rock found by MarsCuriosity

NASA: Intrigued scientists take a second look at strange looking rock found by MarsCuriosity | Amazing Science |

Approaching the third anniversary of its landing on Mars, NASA's Curiosity Mars rover has found a target unlike anything it has studied before -- bedrock with surprisingly high levels of silica. Silica is a rock-forming compound containing silicon and oxygen, commonly found on Earth as quartz. This area lies just downhill from a geological contact zone the rover has been studying near "Marias Pass" on lower Mount Sharp.

In fact, the Curiosity team decided to back up the rover 46 meters (151 feet) from the geological contact zone to investigate the high-silica target dubbed "Elk." The decision was made after they analyzed data from two instruments, the laser-firing Chemistry & Camera (ChemCam) and Dynamic Albedo of Neutrons (DAN), which show elevated amounts of silicon and hydrogen, respectively. High levels of silica in the rock could indicate ideal conditions for preserving ancient organic material, if present, so the science team wants to take a closer look

"One never knows what to expect on Mars, but the Elk target was interesting enough to go back and investigate," said Roger Wiens, the principal investigator of the ChemCam instrument from the Los Alamos National Laboratory in New Mexico. ChemCam is coming up on its 1,000th target, having already fired its laser more than 260,000 times since Curiosity landed on Mars Aug. 6, 2012, Universal Time (evening of Aug. 5, Pacific Time).

In other news, an engineering test on the rover's sample-collecting drill on July 18 is aiding analysis of intermittent short circuits in the drill's percussion mechanism, in preparation for using the drill in the area where the rover has been working for the past two months. The latest test did not result in any short circuits, so the team plans to continue with more tests, performed on the science targets themselves.

Before Curiosity began further investigating the high-silica area, it was busy scrutinizing the geological contact zone near Marias Pass, where a pale mudstone meets darker sandstone. "We found an outcrop named Missoula where the two rock types came together, but it was quite small and close to the ground. We used the robotic arm to capture a dog's-eye view with the MAHLI camera, getting our nose right in there," said Ashwin Vasavada, the mission's project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. MAHLI is short for Mars Hand Lens Imager.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Hawking launches biggest-ever search for alien life

Hawking launches biggest-ever search for alien life | Amazing Science |

British cosmologist Stephen Hawking on Monday launched the biggest-ever search for intelligent extraterrestrial life in a $100-million (92-million-euro), 10-year project to scan the heavens.

Russian Silicon Valley entrepreneur Yuri Milner, who is funding the Breakthrough Listen initiative, said it would be the most intensive scientific search ever undertaken for signs of alien civilisation.

"In an infinite universe, there must be other occurrences of life," Hawking said at the launch event at the Royal Society science academy in London.

"Somewhere in the cosmos, perhaps, intelligent life may be watching.

"Either way, there is no bigger question. It's time to commit to finding the answer, to search for life beyond Earth. "It is important for us to know if we are alone in the dark." The project will use some of the biggest telescopes on Earth, searching far deeper into the universe than before for radio and laser signals. "Breakthrough Listen takes the search for intelligent life in the universe to a completely new level," said Milner, a former physicist.

He said the scan would collect more data in one day than a year of any previous search, tracking the million closest stars, the centre of our Milky Way galaxy and the 100 closest galaxies. Earth's telescopes would be able to detect a signal from similarly-advanced technology sent from the centre of the Milky Way. "We don't need to assume that civilisation is way more developed than we are," Milner said.

The programme will be 50 times more sensitive than previous searches, and cover 10 times more of the sky, experts said. It will scan at least five times more of the radio spectrum, and 100 times faster, while in tandem undertake the deepest and broadest-ever search for optical laser transmissions.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

How a planet could survive a collision between its two suns

How a planet could survive a collision between its two suns | Amazing Science |

The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars.

While searching for Earth-like planets, NASA’s Kepler spacecraft has come across 10 that share one very un-Earth-like quality: They orbit two stars, instead of one. The worlds are aptly named “circumbinary planets” (“circum” meaning around, and “binary” referring to two objects), and in this type of binary system, the two stars orbit each other while the planet orbits the two stars (pictured above). But only the lucky binaries seem to have planets that orbit them; some stellar binaries that lack orbiting bodies have a different third party—a distant star that’s so massive, its gravitational fluxes actually change the orbit of the stellar binary, causing the two stars to shrink together in a process called orbital decay. If left uninterrupted, the stars will eventually collide together in a violent, calamitous explosion. Now, astronomers have asked a new question: What would happen if a circumbinary planet were in the mix? Naturally, one assumes its inevitable, fiery demise. But findings, published online 9 July in the Proceedings of the National Academy of Sciences, reveal that may not be the case.

Using a combination of theoretical and numerical formulas, astronomers calculated that the planet may actually be able to survive the blast. The difference between life and death depends on that third, distant body. The researchers mathematically showed that the same mechanism that forces the binary together shifts the alignment of the circumbinary planet, potentially allowing it to sneak far enough away to escape incineration. Even so, surviving without a home base is a bit of a lonely swap.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

From Mountains to Moons: Multiple Discoveries from NASA’s New Horizons

From Mountains to Moons: Multiple Discoveries from NASA’s New Horizons | Amazing Science |

Icy mountains on Pluto and a new, crisp view of its largest moon, Charon, are among the several discoveries announced Wednesday by NASA's New Horizons team, just one day after the spacecraft’s first ever Pluto flyby.

"Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations."

“Home run!” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “New Horizons is returning amazing results already. The data look absolutely gorgeous, and Pluto and Charon are just mind blowing."

A new close-up image of an equatorial region near the base of Pluto’s bright heart-shaped feature shows a mountain range with peaks jutting as high as 11,000 feet (3,500 meters) above the surface of the icy body.

The mountains on Pluto likely formed no more than 100 million years ago -- mere youngsters in a 4.56-billion-year-old solar system. This suggests the close-up region, which covers about one percent of Pluto’s surface, may still be geologically active today.

“This is one of the youngest surfaces we’ve ever seen in the solar system,” said Jeff Moore of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California.  

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer at SwRI.

The new view of Charon reveals a youthful and varied terrain. Scientists are surprised by the apparent lack of craters. A swath of cliffs and troughs stretching about 600 miles (1,000 kilometers) suggests widespread fracturing of Charon’s crust, likely the result of internal geological processes. The image also shows a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. In Charon’s north polar region, the dark surface markings have a diffuse boundary, suggesting a thin deposit or stain on the surface.

New Horizons also observed the smaller members of the Pluto system, which includes four other moons: Nix, Hydra, Styx and Kerberos. A new sneak-peek image of Hydra is the first to reveal its apparent irregular shape and its size, estimated to be about 27 by 20 miles (43 by 33 kilometers).

The observations also indicate Hydra's surface is probably coated with water ice. Future images will reveal more clues about the formation of this and the other moon billions of years ago. Spectroscopic data from New Horizons’ Ralph instruments reveal an abundance of methane ice, but with striking differences among regions across the frozen surface of Pluto. 

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Magnetic Waves From Distant Black Hole Shake Like Whip Being Held by Giant Hand

Magnetic Waves From Distant Black Hole Shake Like Whip Being Held by Giant Hand | Amazing Science |

NASA scientists say fast-moving waves coming from a distant supermassive black hole undulate like a whip whose handle is being held by a giant hand. NASA released a series of slinky-like images that illustrate the undulating waves. The observation was made by scientists studying data from National Radio Astronomy Observatory's Very Long Baseline Array. The galaxy/black hole system is called BL Lacertae (BL Lac).

This is the first time Alfven waves have been identified in a black hole system. The waves are generated when magnetic field lines interact with charged particles or ions. They then become twisted or coiled. The ions from BL Lac are in the form of particle jets flung from opposite sides of the black hole at speeds about 98 percent the speed of light. The jet is a flow of charged particles, called a plasma. It has a helical magnetic field that permeates the plasma. 

David Meier, a retired astrophysicist from NASA's Jet Propulsion Laboratory and the California Institute of Technology, says in a statement, "The waves are excited by a shaking motion of the jet at its base. By analyzing these waves, we are able to determine the internal properties of the jet, and this will help us ultimately understand how jets are produced by black holes." 

Marshall Cohen, an astronomer at Caltech and first author of the study, says, "Imagine running a water hose through a slinky that has been stretched taut. A sideways disturbance at one end of the slinky will create a wave that travels to the other end, and if the slinky sways to and fro, the hose running through its center has no choice but to move with it." 

The researchers say it is common for black hole particle jets to bend but it typically takes place of thousands of millions of years. Cohen says what is happening with the BL Lacertae system takes place in a matter of weeks. 

He says, "We're taking pictures once a month, and the position of the waves is different each month." 

No comment yet.
Scooped by Dr. Stefan Gruenwald!

What happens when Cosmic Giants meet Galactic Dwarfs?

What happens when Cosmic Giants meet Galactic Dwarfs? | Amazing Science |

When two different sized galaxies smash together, the larger galaxy stops the smaller one making new stars, according to a study of more than 20,000 merging galaxies.

The research, published today, also found that when two galaxies of the same size collide, both galaxies produce stars at a much faster rate. Astrophysicist Luke Davies, from The University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), says our nearest major galactic neighbour, Andromeda, is hurtling on a collision course with the Milky Way at about 400,000 kilometres per hour.

“Don’t panic yet, the two won’t smash into each other for another four billion years or so,” he says. “But investigating such cosmic collisions lets us better understand how galaxies grow and evolve.”

Previously, astronomers thought that when two galaxies smash into each other their gas clouds—where stars are born—get churned up and seed the birth of new stars much faster than if they remained separate.

However Dr Davies’ research, using the Galaxy and Mass Assembly (GAMA) survey observed using the Anglo-Australian Telescope in regional New South Wales, suggests this idea is too simplistic. He says whether a galaxy forms stars more rapidly in a collision, or forms any new stars at all, depends on if it is the big guy or the little guy in this galactic car crash.

“When two galaxies of similar mass collide, they both increase their stellar birth rate,” Dr Davies says. “However when one galaxy significantly outweighs the other, we have found that star formation rates are affected for both, just in different ways.

“The more massive galaxy begins rapidly forming new stars, whereas the smaller galaxy suddenly struggles to make any at all. “This might be because the bigger galaxy strips away its smaller companion’s gas, leaving it without star-forming fuel or because it stops the smaller galaxy obtaining the new gas required to form more stars.”

The study was released today in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

So what will happen in four billion years to the Milky Way and Andromeda? Dr Davies says the pair are like “cosmic tanks”—both relatively large and with similar mass. “As they get closer together they will begin to affect each other’s star formation, and will continue to do so until they eventually merge to become a new galaxy, which some call ‘Milkdromeda’,” he says.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from Limitless learning Universe!

Powerful Space Telescope To Scan Alien Planets for Signs of Life

Powerful Space Telescope To Scan Alien Planets for Signs of Life | Amazing Science |

A successor to NASA's famous Hubble Space Telescope and the soon-to-be-launched James Webb Space Telescope is already in the planning stages by a group of leading astronomers. The proposed High Definition Space Telescope, or HDST, would have 25 times the resolution of Hubble and would serve as a "flagship observatory" for the global

 astronomical community. One of its primary scientific objectives would be to study the atmospheres of dozens of Earth-like alien planets, looking for signs of life.

A new report released Monday (July 6) outlines a broad plan for the telescope. To publicize the report, a panel of scientists involved with the project spoke to the public about the HDST at an event at the American Museum of Natural History (AMNH), here in New York. The event was hosted by Neil deGrasse Tyson, who is director of the museum's Hayden Planetarium.

The report was produced by the Association of Universities for Research in Astronomy (AURA), which is involved with many major telescopes and space science facilities including the James Webb Space Telescope (JWST), the Gemini Observatory and the Space Telescope Science Institute in Baltimore.

The new report gives a launch window for the proposed HDST of sometime in the 2030s. The telescope would view the universe in ultraviolet, optical and infrared light, with a 39-foot-wide (12 meters) multipiece mirror (similar to the honeycomblike mirror on the James Webb Space Telescope). Hubble's primary mirror is 7.8 feet (2.4 m) wide, while that of JWST is 16.4 feet (5.4 m) wide.

Members of the AURA HDST committee said the increase in resolution from Hubble to HDST would be equivalent to the resolution increase from the earliest black-and-white televisions, which had a resolution of about 780 by 420 pixels, to the high-definition screens available today, which are in the range of 3820 by 2160 pixels.

"Bigger telescopes see deeper into space with better detail. Period," Tyson said to reporters prior to the public event. "And it's not just that you will see the objects you already know about better. Our experience tells us that all-new phenomena, undreamt of, manifest themselves in the face of this higher level of technology. And that is what we're actually after here — not simply understanding what we already know a little better. [The HDST has] the potential to make significant, field-changing discoveries."

This sentiment was echoed by Michael Shara, a curator in the department of astrophysics at AMNH, speaking to reporters. Shara explained that in addition to an increase in resolution of images, overall the HDST would be "100 to 1,000 times as powerful as Hubble." 

That number comes from combining multiple factors of HDST as they compare with Hubble, including "25 to 35 times the collecting area," or surface area of the telescope (the aperture squared), and four times the area of coverage. AURA's plan for the HDST would place it in a region known as the second Lagrangian point (L2), about 932,000 miles (1.5 million kilometers) from Earth, which would give it a clearer and darker sky than the Earth-orbiting Hubble, reducing background noise from images. (JWST, which is scheduled to launch in 2018, will also orbit at L2.)

Via CineversityTV
No comment yet.
Scooped by Dr. Stefan Gruenwald!

AI algorithm learns to ‘see’ features in galaxy images

AI algorithm learns to ‘see’ features in galaxy images | Amazing Science |

A team of astronomers and computer scientists at the University of Hertfordshire have taught a machine to “see” astronomical images, using data from the Hubble Space Telescope Frontier Fields set of images of distant clusters of galaxies that contain several different types of galaxies. The technique, which uses a form of AI called unsupervised machine learning, allows galaxies to be automatically classified at high speed, something previously done by thousands of human volunteers in projects like Galaxy Zoo.

“We have not told the machine what to look for in the images, but instead taught it how to ‘see,’” said graduate student Alex Hocking. “Our aim is to deploy this tool on the next generation of giant imaging surveys where no human, or even group of humans, could closely inspect every piece of data. But this algorithm has a huge number of applications far beyond astronomy, and investigating these applications will be our next step,” said University of Hertfordshire Royal Society University Research Fellow James Geach, PhD.

The scientists are now looking for collaborators to make use of the technique in applications like medicine, where it could for example help doctors to spot tumors, and in security, to find suspicious items in airport scans.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Hubble Captures Image of Rare Wolf-Rayet Galaxy

Hubble Captures Image of Rare Wolf-Rayet Galaxy | Amazing Science |
The Advanced Camera for Surveys, one of the Hubble’s advanced instruments, has taken a spectacularly detailed image of a galaxy called SBS 1415+437.

Discovered in 1995 by a team of astronomers from the United States and Ukraine, SBS 1415+437 lies in the constellation Boötes at a distance of about 45.3 million light-years. It is a galaxy type known as a cometary blue compact dwarf galaxy. Astronomers initially thought that SBS 1415+437 was a truly young galaxy that did not start to form stars until 100 million years ago, but a recent study has suggested that the galaxy is in fact older, containing stars 1.3 billion years old.

SBS 1415+437, otherwise known as PGC 51017, SBSG 1415+437 or SDSS CGB 12067.1, also belongs to a rare group of starburst galaxies called Wolf–Rayet galaxies. The galaxy has an unusually high number of extremely hot and massive Wolf–Rayet stars. These stars are among the largest and shortest lived stars known, typically over 20 solar masses with surface temperatures well over 25,000 K. Many of the brightest and most massive stars in the Milky Way are Wolf–Rayet stars.

These massive stars are in the stage of their stellar evolution where they undergo heavy mass loss. A typical Wolf–Rayet star can lose a mass equal to that of our Sun in just 100,000 years. Because of this it is unusual to find more than a few of these stars per galaxy – except in Wolf–Rayet galaxies, like the one in this image.

No comment yet.