Amazing Science
Follow
Find tag "'MOST READS'"
457.4K views | +74 today
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New device from Johns-Hopkins yields close-up look at metastasizing cancer cells

New device from Johns-Hopkins yields close-up look at metastasizing cancer cells | Amazing Science | Scoop.it

Engineers at Johns Hopkins Institute for NanoBioTechnology (INBT) have invented a lab device to give cancer researchers an unprecedented microscopic look at metastasis (spread of tumor cells, causing more than 90 percent of cancer-related deaths), with the goal of eventually stopping the spread, described in their paper in the journal Cancer Report.


“There’s still so much we don’t know about exactly how tumor cells migrate through the body, partly because, even using our best imaging technology, we haven’t been able to see precisely how these individual cells move into blood vessels,” said Andrew D. Wong, a Department of Materials Science and Engineering doctoral student and lead author of the journal article. “Our new tool gives us a clearer, close-up look at this process.”


The device replicated these processes in a small transparent chip that incorporates an artificial blood vessel and surrounding tissue material. A nutrient-rich solution flows through the artificial vessel, mimicking the properties of blood.


With this novel lab platform, Wong said, the team was able to record a video of the movement of individual cancer cells as they crawled through a three-dimensional collagen matrix. This material resembles the human tissue that surrounds tumors when cancer cells break away and try to relocate elsewhere in the body.


Wong also created a video (above) of single cancer cells prying and pushing their way through the wall of an artificial vessel lined with human endothelial cells, the same kind that line human blood vessels.


By entering the bloodstream through this process, called “intravasion,” cancer cells are able to hitch a ride to other parts of the body and begin to form deadly new tumors.


The breast cancer cells, inserted individually and in clusters in the tissue near the vessel, are labeled with fluorescent tags, enabling their behavior to be seen, tracked and recorded via a microscopic viewing system.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns

Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns | Amazing Science | Scoop.it

It defies belief, but a 180 million year old fern fossil unearthed in Sweden is so exquisitely preserved that it is possible to see its cells dividing. So pristine is the fossil, reported scientists from the Swedish Museum of Natural History in the journal Science in March, that it is possible for them to estimate its genome size from the size of its cell nuclei — and that it has remained substantially unchanged from its living descendants since the early Jurassic.


The ferns were swallowed by a volcanic mudflow called a lahar, in which gas and rocky debris from an eruption mix with water and sediment. After entombment, hot salty water percolated into the coarse sediments around the ferns and acted as a preservative brine that immortalized the hapless plants. Their misfortune was our luck: 180 million years later, we can see details of their macro and micro anatomy so well that we can see how uncannily similar they are to their living descendants, royal and cinnamon ferns. They could be sisters!


Fossils from the family this fern belongs to had already been found from 220 million year-old rocks that were recognizable as the living species Osmunda claytonia — the interrupted fern — and other fossils from the Mesozoic have been found that are virtually indistinguishable from other genera and species in the fern’s family, the Osmundaceae (the royal ferns). But microscopic preservation of this quality has rarely been seen in any fossils before.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

See me here, see me there: A quantum world arising from many ordinary ones

See me here, see me there: A quantum world arising from many ordinary ones | Amazing Science | Scoop.it

The bizarre behavior of the quantum world — with objects existing in two places simultaneously and light behaving as either waves or particles — could result from interactions between many 'parallel' everyday worlds, a new theory suggests.


“It is a fundamental shift from previous quantum interpretations,” says Howard Wiseman, a theoretical quantum physicist at Griffith University in Brisbane, Australia, who together with his colleagues describes the idea in Physical Review X1.


Theorists have tried to explain quantum behavior through various mathematical frameworks. One of the older interpretations envisages the classical world as stemming from the existence of many simultaneous quantum ones. But that ‘many worlds’ approach, pioneered by the US theorist Hugh Everett III in the 1950s, relies on the worlds branching out independently from one another, and not interacting at all (see 'Many worlds: See me here, see me there').


By contrast, Wiseman’s team envisages many worlds bumping into one another, calling it the 'many interacting worlds' approach. On its own, each world is ruled by classical Newtonian physics. But together, the interacting motion of these worlds gives rise to phenomena that physicists typically ascribe to the quantum world.


The authors work through the mathematics of how that interaction could produce quantum phenomena. For instance, one well-known example of quantum behaviour is when particles are able to tunnel through an energetic barrier that in a classical world they would not be able to overcome on their own. Wiseman says that, in his scenario, as two classical worlds approach an energetic barrier from either side, one of them will increase in speed while the other will bounce back. The leading world will thus pop through the seemingly insurmountable barrier, just as particles do in quantum tunneling.


But much work remains. “By no means have we answered all the questions that such a shift entails,” says Wiseman. Among other things, he and his collaborators have yet to overcome challenges such as explaining how their many-interacting-worlds theory could explain quantum entanglement, a phenomenon in which particles separated by a distance are still linked in terms of their properties.

more...
Carlos Garcia Pando's comment, October 31, 2014 5:25 AM
I think entanglement is a consequence of two simple universes perfectly matching in one particle. What we see is not two entangled particles but one particle that belongs to two very close universes. Close in a different sense, not spatial proximity as we know it, but close enough to share at least one particle in all its observable attributes but space position.
Kirsty Foster's curator insight, October 31, 2014 9:24 AM

kirsty

Vloasis's curator insight, October 31, 2014 2:56 PM

Much to ponder.

Scooped by Dr. Stefan Gruenwald
Scoop.it!

The top 100 papers: NATURE magazine explores the most-cited research papers of all time

The top 100 papers: NATURE magazine explores the most-cited research papers of all time | Amazing Science | Scoop.it

The discovery of high-temperature superconductors, the determination of DNA’s double-helix structure, the first observations that the expansion of the Universe is accelerating — all of these breakthroughs won Nobel prizes and international acclaim. Yet none of the papers that announced them comes anywhere close to ranking among the 100 most highly cited papers of all time.


Citations, in which one paper refers to earlier works, are the standard means by which authors acknowledge the source of their methods, ideas and findings, and are often used as a rough measure of a paper’s importance. Fifty years ago, Eugene Garfield published the Science Citation Index (SCI), the first systematic effort to track citations in the scientific literature. To mark the anniversary, Nature asked Thomson Reuters, which now owns the SCI, to list the 100 most highly cited papers of all time. (See the full list at Web of Science Top 100.xls or the interactive graphic, below.) The search covered all of Thomson Reuter’s Web of Science, an online version of the SCI that also includes databases covering the social sciences, arts and humanities, conference proceedings and some books. It lists papers published from 1900 to the present day.


The exercise revealed some surprises, not least that it takes a staggering 12,119 citations to rank in the top 100 — and that many of the world’s most famous papers do not make the cut. A few that do, such as the first observation1 of carbon nanotubes (number 36) are indeed classic discoveries. But the vast majority describe experimental methods or software that have become essential in their fields.


The most cited work in history, for example, is a 1951 paper2 describing an assay to determine the amount of protein in a solution. It has now gathered more than 305,000 citations — a recognition that always puzzled its lead author, the late US biochemist Oliver Lowry.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

San Diego company develops 10-minute $10 Ebola test

San Diego company develops 10-minute $10 Ebola test | Amazing Science | Scoop.it

With a single prick and a single drop of blood, a San Diego company claims they can now detect if a patient has Ebola in less than 10 minutes. The breakthrough technology is called “Ebola Plus,” a tool that can be used to detect Ebola on anyone, anywhere in the world.


“We can do that for a large number of tests simultaneously with just one drop of blood,” said Dr. Cary Gunn, Ph.D. and CEO and Genalyte. Once blood is drawn, a silicon chip is used to detect the virus as blood flows over it.


Researchers at Genalyte have been working on the diagnostic tool for seven years, using it to test for various diseases, and only recently discovered it could also work to spot Ebola. “It allows you to screen more patients more rapidly. The biggest question right now is the debate about quarantine.


Instead of asking people to take their fever once or twice a day, they can just take a prick of blood,” said Dr. Gunn. It can analyze up to 100 samples per hour, and be administered anywhere including, hospitals, airports, and even remote areas in West Africa where the disease is spreading rapidly. “Right now, most people in Liberia aren’t even being tested. People who have suspicion of having Ebola are being checked into wards. The ability to take a prick of blood and do the test would be a game changer in that environment,” said Gunn.


Developing the platform for the test cost Genalyte around $100,000, but each chip that will be used during the tests costs $10 each – making early detection cheaper and easier for caretakers. Currently, the FDA has only approved for P-C-R that can take two hours for results, compared to the Ebola Plus that can provide results in ten minutes.

more...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

255 Terabits/s: Researchers demonstrate record data transmission over new type of fiber

255 Terabits/s: Researchers demonstrate record data transmission over new type of fiber | Amazing Science | Scoop.it

Researchers at Eindhoven University of Technology (TU/e) in the Netherlands and the University of Central Florida (CREOL), report in the journal Nature Photonics the successful transmission of a record high 255 Terabits/s over a new type of fiber allowing 21 times more bandwidth than currently available in communication networks. This new type of fiber could be an answer to mitigating the impending optical transmission capacity crunch caused by the increasing bandwidth demand.

Due to the popularity of Internet services and emerging network of capacity-hungry datacentres, demand for telecommunication bandwidth is expected to continue at an exponential rate. To transmit more information through current optical glass fibers, an option is to increase the power of the signals to overcome the losses inherent in the glass from which the fibre is manufactured. However, this produces unwanted photonic nonlinear effects, which limit the amount of information that can be recovered after transmission over the standard fiber.


The team at TU/e and CREOL, led by dr. Chigo Okonkwo, an assistant professor in the Electro-Optical Communications (ECO) research group at TU/e and dr. Rodrigo Amezcua Correa, a research assistant professor in Micro-structured fibers at CREOL, demonstrate the potential of a new class of fiber to increase transmission capacity and mitigate the impending 'capacity crunch' in their article that appeared yesterday in the online edition of the journal Nature Photonics.


The new fiber has seven different cores through which the light can travel, instead of one in current state-of-the-art fibers. This compares to going from a one-way road to a seven-lane highway. Also, they introduce two additional orthogonal dimensions for data transportation – as if three cars can drive on top of each other in the same lane. Combining those two methods, they achieve a gross transmission throughput of 255 Terabits/s over the fiber link. This is more than 20 times the current standard of 4-8 Terabits/s.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Alan Eustace, Google, Jumps From Top of Stratosphere, Falling Faster Than The Speed of Sound

Alan Eustace, Google, Jumps From Top of Stratosphere, Falling Faster Than The Speed of Sound | Amazing Science | Scoop.it

A well-known computer scientist parachuted from a balloon near the top of the stratosphere on Friday, falling faster than the speed of sound and breaking the world altitude record set just two years ago.


The jump was made by Alan Eustace, 57, a senior vice president at Google. At dawn he was lifted by a balloon filled with 35,000 cubic feet of helium, from an abandoned runway at the airport here.


For a little over two hours, the balloon ascended at speeds up to 1,600 feet per minute to an altitude of 135,908 feet, more than 25 miles. Mr. Eustace dangled underneath in a specially designed spacesuit with an elaborate life-support system. He returned to earth just 15 minutes after starting his fall.


“It was amazing,” he said. “It was beautiful. You could see the darkness of space and you could see the layers of atmosphere, which I had never seen before.”


Mr. Eustace cut himself loose from the balloon with the aid of a small explosive device and plummeted toward the earth at a speeds that peaked at more than 800 miles per hour, setting off a small sonic boom heard by observers on the ground.

more...
Marc Kneepkens's curator insight, October 24, 2014 2:39 PM

Some people dare to take a challenge. They prepare well, they calculate the risk and then they just do it. Awesome.

M. Philip Oliver's curator insight, October 25, 2014 2:16 PM

Unique travel mode

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Brain barrier opened for first time to treat cancer

Brain barrier opened for first time to treat cancer | Amazing Science | Scoop.it

For the first time, doctors have opened and closed the brain's protector – the blood-brain barrier – on demand. The breakthrough will allow drugs to reach diseased areas of the brain that are otherwise out of bounds. Ultimately, it could make it easier to treat conditions such as Alzheimer's and brain cancer.


The blood-brain barrier (BBB) is a sheath of cells that wraps around blood vessels (in black) throughout the brain. It protects precious brain tissue from toxins in the bloodstream, but it is a major obstacle for treating brain disorders because it also blocks the passage of drugs.


Several teams have opened the barrier in animals to sneak drugs through. Now Michael Canney at Paris-based medical start-up CarThera, and his colleagues have managed it in people using an ultrasound brain implant and an injection of microbubbles.

When ultrasound waves meet microbubbles in the blood, they make the bubbles vibrate. This pushes apart the cells of the BBB.


With surgeon Alexandre Carpentier at Pitié-Salpêtrière Hospital in Paris, Canney tested the approach in people with a recurrence of glioblastoma, the most aggressive type of brain tumour. People with this cancer have surgery to remove the tumours and then chemotherapy drugs, such as Carboplatin, are used to try to kill any remaining tumour cells. Tumours make the BBB leaky, allowing in a tiny amount of chemo drugs: if more could get through, their impact would be greater, says Canney.


The team tested the idea on four patients by implanting an ultrasound transducer through a hole already made in their skulls during tumour-removal surgery. They were then given an injection of microbubbles and had the transducer switched on for 2 minutes. This sent low-intensity pulses of ultrasound into a region of the brain just 10 millimetres by 4 mm. Canney reckons this makes the BBB in this region more permeable for about 6 hours. In this time window, each person received normal chemotherapy.

more...
Warwick Raverty's curator insight, October 22, 2014 7:48 PM

Hope at last for people with inoperable brain tumours!

Nicole Masureik's curator insight, October 23, 2014 2:41 AM

What an amazing advance! This could open doors for all sorts of things. However, there is so much about the functioning of the brain that we don't understand, that we will need to watch the long term effects carefully.

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Using monoclonal antibodies produced in plants to fight off a lethal virus like Ebola

Using monoclonal antibodies produced in plants to fight off a lethal virus like Ebola | Amazing Science | Scoop.it

Kevin Whaley, the CEO at Mapp Bio isn't much given to publicly discussing ZMapp, the remarkable new treatment for Ebola, at all. At a time when every public biotech company with a preclinical program for Ebola is clamoring for attention, Whaley has given precious few interviews. And when he has talked about ZMapp, he's been careful to say that the company doesn't know whether it works and has lots more work to do. If anything, the air of mystery has only heightened the lurid 24/7 cable news attention given to ZMapp, which could help revolutionize the way in which outbreaks are treated in years to come.


ZMapp is a cocktail therapy made up of antibodies that Mapp's small team of 9 has assembled into a single treatment. For a vaccine, investigators would work on delivering antibodies that would prime the human immune system to fight off a lethal virus like Ebola. But for people who are already infected, facing about a 50% mortality rate, this new approach has the potential to provide a powerful and immediate response.


ZMapp includes antibodies that were generated in mouse models exposed to an Ebola protein, then "humanized" to prevent rejection, transferred to tobacco plants through a benign plant virus--or vector--and grown in the genetically engineered tobacco leaves, which are harvested to produce the therapy. The cocktail includes antibodies licensed from Defyrus and USAMRIID, all drawn by the notion that a cocktail therapy would prove to be a patient's best shot at survival. That combination of antibodies in the cocktail represents the culmination of 10 years of work, and it was only arrived at in January.


The NIH unintentionally helped get the media frenzy started when they supplied a few doses to treat two Western Ebola victims, who appear to have responded very well and are now recovering. In a matter of weeks, Mapp nailed another impressive primate study, saving all the infected animals from a likely death. The U.S. government followed up with a contract worth up to $42 million to speed up work on production. The helter-skelter development effort was pointed down the path to a quick approval as Mapp's slow-motion progress of recent years collided with the fact that only one Ebola treatment was in the clinic, and that one had been under a clinical hold at the FDA before regulators immediately cleared it for production.


Enormous logistical issues remain. In addition to the clinical program that's needed to fully test the safety and efficacy of the treatment in humans, the treatment would need to be made in large quantities in order to combat the worst outbreak health officials have seen since Ebola first appeared in 1976. Currently, only one biologic is approved for manufacturing in plants, and that is Protalix's ($PLXGaucher'sdrug, which is made in plant cells. Kentucky BioProcessing currently makes ZMapp, using vector technology from Icon Genetics. But even with a huge effort, KBP would need months to scale up production.


South African officials say they have been approached about building a facility, which would take time, while Protalix has had to walk back some statements implying that they could adapt their manufacturing process to churn out ZMapp.


ZMapp™ is the result of a collaboration between Mapp Biopharmaceutical, Inc. and  LeafBio (San Diego, CA), Defyrus Inc (Toronto, Canada), the U.S. government and the Public Health Agency of Canada (PHAC). ZMapp™ is composed of three “humanized” monoclonal antibodies manufactured in plants, specifically Nicotiana. It is an optimized cocktail combining the best components of MB-003 (Mapp) and ZMAb (Defyrus/PHAC).


ZMappTM was first identified as a drug candidate in January 2014 and has not yet  been evaluated for safety in humans. As such, very little of the drug is currently available. Any decision to use an experimental drug in a patient would be a decision made by the treating physician under the regulatory guidelines of the FDA.


Mapp and its partners are cooperating with appropriate government agencies to increase production as quickly as possible. Two partnerships were crucial to us in the development of the plant system for ZMappTM: Icon Genetics AG (Halle, Germany) and Kentucky BioProcessing (KBP,
Owensboro, KY). Icon pioneered vectors for engineering Nicotiana to produce biopharmaceuticals. KBP specializes in GMP manufacturing of therapeutic proteins in Nicotiana.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

UCSC Ebola genome browser now online to aid researchers' response to crisis

UCSC Ebola genome browser now online to aid researchers' response to crisis | Amazing Science | Scoop.it

The UC Santa Cruz Genomics Institute late Tuesday (September 30) released a new Ebola genome browser to assist global efforts to develop a vaccine and antiserum to help stop the spread of the Ebola virus.

The team led by University of California, Santa Cruz researcher Jim Kent worked around the clock for the past week, communicating with international partners to gather and present the most current data. The Ebola virus browser aligns five strains of Ebola with two strains of the related Marburg virus. Within these strains, Kent and other members of the UC Santa Cruz Genome Browser team have aligned 148 individual viral genomes, including 102 from the current West Africa outbreak.

UC Santa Cruz has established the UCSC Ebola Genome Portal, with links to the new Ebola genome browser as well as links to all the relevant scientific literature on the virus. 

“Ebola has been one of my biggest fears ever since I learned about it in my first microbiology class in 1997," said Kent, who 14 years ago created the first working draft of the human genome.  "We need a heroic worldwide effort to contain Ebola. Making an informatics resource like the genome browser for Ebola researchers is the least we could do.”

Scientists around the world can access the open-source browser to compare genetic changes in the virus genome and areas where it remains the same. The browser allows scientists and researchers from drug companies, other universities, and governments to study the virus and its genomic changes as they seek a solution to halt the epidemic. 

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Algae deliver hydrogen at a 5 times higher efficiency

Algae deliver hydrogen at a 5 times higher efficiency | Amazing Science | Scoop.it
Hydrogen as a regenerative fuel produced in gigantic water tanks full of algae, which need nothing more than sunlight to produce the promising green energy carrier: a great idea in theory, but one that fails due to the vast amount of space required for the production process. Scientists from the Max Planck Institutes for Chemical Energy Conversion and Coal Research) in Mülheim an der Ruhr, and from the research group Photobiotechnology at Ruhr-Universität Bochum (RUB) have now discovered a way of increasing the efficiency of hydrogen production in microalgae by a factor of five. If the algae can generate the fuel more efficiently, it can be produced in a smaller area and in quantities suitable for practical use. This approach also dispenses with the need for rare and expensive precious metals, which are used to split the energy-rich gas is technically from water.

Living organisms need electrons in many places, as they use them to form chemical compounds. Algae and other organisms which carry out photosynthesis release electrons from water with the help of sunlight and then distribute them in the cell. The ferrous protein PETF is responsible for this: It transports the electrons in particular to ferredoxin-NADP+ oxidoreductase (FNR), so that NADPH is formed and carbohydrates are finally synthesised from carbon dioxide. The production of hydrogen through hydrogenases is among the many other processes, for which PETF provides the necessary electrons.

Hydrogenases are very efficient enzymes that contain a unique active centre comprising six iron atoms, where the electrons supplied by PETF are bound to protons. Molecular hydrogen is produced in this way.

With the help of nuclear magnetic resonance spectroscopy, on which magnetic resonance imaging in medicine is also based, the scientists working with Sigrun Rumpel, a post doc at the Max Planck Institute for Chemical Energy Conversion in Mülheim, investigated the components of PETF – or more precisely amino acids – that interact with the hydrogenase and those that interact with FNR. It emerged that only two amino acids of PETF are important for binding FNR. When the researchers modified these two amino acids and the enzyme FNR, PETF was no longer able to bind FNR as efficiently. Thus, the enzyme transferred less electrons to FNR and more to the hydrogenase. In this way, the scientists increased the hydrogen production by a factor of five.


“For a technically feasible hydrogen production with the help of algae, its efficiency must be increased by a factor of 10 to 100 compared to the natural process,” says Sigrun Rumpel. “Through the targeted modification of PETF and FNR we have taken a step towards achieving this objective.” Up to now, the production of hydrogen from renewable energy carriers involved the electrolytic splitting of water. Expensive and rare precious metals like platinum are currently required for this purpose. Sigrun Rumpel and other researchers are therefore working on finding a way of enabling algae to efficiently produce the fuel. Microalgae produce the gas naturally, but in very small volumes. Thus, if cars were to be powered one day using hydrogen rather than petrol or diesel, to come anywhere near covering Germany’s fuel requirements, gigantic areas with tanks full of algal cultures would have to be set up.


“These results represent a path to the economically-viable regenerative production of fuels with the help of microalgae,” says Sigrun Rumpel. The change of electron transfer pathways could further improve hydrogen production in future. The researchers therefore now want to combine different modifications with each other.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes | Amazing Science | Scoop.it
Even as the 2014 Nobel Prize in Physics has enshrined light emitting diodes (LEDs) as the single most significant and disruptive energy-efficient lighting solution of today, scientists around the world continue unabated to search for the even-better-bulbs of tomorrow.


Enter carbon electronics. Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors to silicon for making semiconductor materials. And they may enable a new generation of brighter, low-power, low-cost lighting devices that could challenge the dominance of light-emitting diodes (LEDs) in the future and help meet society's ever-escalating demand for greener bulbs.


Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumption of around 0.1 Watt for every hour's operation—about a hundred times lower than that of an LED.


In the journal Review of Scientific Instruments, from AIP publishing, the researchers detail the fabrication and optimization of the device, which is based on a phosphor screen and single-walled carbon nanotubes as electrodes in a diode structure. You can think of it as a field of tungsten filaments shrunk to microscopic proportions.


They assembled the device from a mixture liquid containing highly crystalline single-walled carbon nanotubes dispersed in an organic solvent mixed with a soap-like chemical known as a surfactant. Then, they "painted" the mixture onto the positive electrode or cathode, and scratched the surface with sandpaper to form a light panel capable of producing a large, stable and homogenous emission current with low energy consumption.


"Our simple 'diode' panel could obtain high brightness efficiency of 60 Lumen per Watt, which holds excellent potential for a lighting device with low power consumption," said Norihiro Shimoi, the lead researcher and an associate professor of environmental studies at the Tohoku University.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

From decisions to disorders: how neuroscience is changing what we know about ourselves

From decisions to disorders: how neuroscience is changing what we know about ourselves | Amazing Science | Scoop.it

People have wanted to understand our motivations, thoughts and behaviors since the ancient Greeks inscribed “know thyself” on the Temple of Apollo at Delphi. And understanding the brain’s place in health and disease is one of this century’s greatest challenges – take Alzheimer’s, dementia and depression for example.


There are many exciting contributions from neuroscience that have given insight into our thoughts and actions. Three neuroscientists have just been awarded the 2014 Nobel Prize for their discoveries of cells that act as a positioning system in the brain – in other words, the mechanism that allows us to navigate spaces using spatial information and memory at a cellular level.


There are many exciting contributions from neuroscience that have given insight into our thoughts and actions. For example, the neural basis of how we make fast and slow decisions and decision-making under conditions of uncertainty. There is also an understanding how the brain is affected by stress and how these stresses might switch our brains into habit mode, for example operating on “automatic pilot” and forgetting to carry out planned tasks, or the opposite goal-directed system, which would see you going out of your usual routine, for example, popping into a different supermarket to get special ingredients for a recipe.


Disruption in the balance between the two is evident in neuro-psychiatric disorders, such as obsessive compulsive disorder, and recent evidence suggests that lower grey matter volumes in the brain can bias towards habit formation. Neuroscience is also demonstrating commonalities in disorders of compulsivity, methamphetamine abuse and obese subjects with eating disorders.


Neuroscience can challenge previously accepted views. For example, major abnormalities in dopamine function were thought the main cause of adult attention deficit hyperactivity disorder (ADHD). However, recent work suggests that the main cause of the disorder may instead be associated with structural differences in grey matter in the brain.


What neuroscience has made evidently clear is that changes in the brain cause changes in your thinking and actions, but the relationship is two-way. Environmental stressors, including psychological and substance abuse, can also change the brain. We also now know our brains continue developing into late adolescence or early young adulthood, it is not surprising that these environmental influences are particularly potent in a number of disorders during childhood and adolescence including autism.


more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New brain decoder algorithm can eavesdrop on your inner voice

New brain decoder algorithm can eavesdrop on your inner voice | Amazing Science | Scoop.it

As you read this, your neurons are firing – that brain activity can now be decoded to reveal the silent words in your head. TALKING to yourself used to be a strictly private pastime. That's no longer the case – researchers have eavesdropped on our internal monologue for the first time. The achievement is a step towards helping people who cannot physically speak communicate with the outside world.


"If you're reading text in a newspaper or a book, you hear a voice in your own head," says Brian Pasley at the University of California, Berkeley. "We're trying to decode the brain activity related to that voice to create a medical prosthesis that can allow someone who is paralysed or locked in to speak."


When you hear someone speak, sound waves activate sensory neurons in your inner ear. These neurons pass information to areas of the brain where different aspects of the sound are extracted and interpreted as words.


In a previous study, Pasley and his colleagues recorded brain activity in people who already had electrodes implanted in their brain to treat epilepsy, while they listened to speech. The team found that certain neurons in the brain's temporal lobe were only active in response to certain aspects of sound, such as a specific frequency. One set of neurons might only react to sound waves that had a frequency of 1000 hertz, for example, while another set only cares about those at 2000 hertz. Armed with this knowledge, the team built an algorithm that could decode the words heard based on neural activity alone

 (PLoS Biology, doi.org/fzv269).

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Global groundwater crisis may get worse as the world warms

Global groundwater crisis may get worse as the world warms | Amazing Science | Scoop.it

The world is facing an increasingly dire groundwater depletion crisis, according to a NASA researcher. From India to Texas, people are rapidly depleting their valuable stores of groundwater — leading to the possibility that aquifers may be emptied within decades, a NASA researcher has warned.


In a recent commentary in the journal Nature Climate Change, Jay Famiglietti, who has helped lead the use of a NASA satellite system to detect groundwater changes around the world, warned of dramatic consequences to come if changes are not made to the way that societies manage water supplies. “Our overuse of groundwater puts our overall water security at far greater risk than we thought,” Famiglietti says.


Unlike surface water, which is replenished through precipitation, groundwater can take centuries to recharge. Yet humans are depleting groundwater at rates that far exceed the pace at which this water can be replenished.


Think of it this way: groundwater is analogous to a pension, a long-term investment that takes many years to pay off. If you withdraw more than you put in, you'll go bankrupt in the long run. Dams and reservoirs, meanwhile, are more like a checking account.


"Groundwater is being pumped at far greater rates than it can be naturally replenished, so that many of the largest aquifers on most continents are being mined, their precious contents never to be returned," Famiglietti, a researcher at NASA's Jet Propulsion Laboratory in California, wrote.


Famiglietti has used NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite system, which is capable of detecting the most subtle changes in Earth's gravitational field to spot land elevation changes, and thus water depletion, to publish a number of studies on groundwater in recent years. During the summer, for example, he contributed to a study that revealed that water users throughout the Colorado River Basin are tapping into groundwater supplies to make up for the lack of adequate supplies of surface water.


The study found that more than 75% of the water loss in the Colorado River Basin since 2004 came from groundwater. GRACE showed that between December 2004 and November 2013, the Colorado River basin lost nearly 53 million acre feet of freshwater, which is double the total volume of the country’s largest reservoir — Lake Mead in Arizona. More than three-quarters of the total — about 41 million acre feet — was from groundwater.

more...
Katelyn Sesny's curator insight, October 31, 2014 11:41 AM

A lengthy but interesting article. The issue of the "Global Groundwater Crisis" might become a very huge problem in the near future. - UNIT 1

Scooped by Dr. Stefan Gruenwald
Scoop.it!

New solar power material converts 90 percent of captured light into heat

New solar power material converts 90 percent of captured light into heat | Amazing Science | Scoop.it

A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants designed to absorb and convert to heat more than 90 percent of the sunlight it captures. The new material can also withstand temperatures greater than 700 degrees Celsius and survive many years outdoors in spite of exposure to air and humidity. Their work, funded by the U.S. Department of Energy's SunShot program, was published recently in two separate articles in the journal Nano Energy.


By contrast, current solar absorber material functions at lower temperatures and needs to be overhauled almost every year for high temperature operations. "We wanted to create a material that absorbs sunlight that doesn't let any of it escape. We want the black hole of sunlight," said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering. Jin, along with professor Zhaowei Liu of the department of Electrical and Computer Engineering, and Mechanical Engineering professor Renkun Chen, developed the Silicon boride-coated nanoshell material. They are all experts in functional materials engineering.


The novel material features a "multiscale" surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The multiscale structures can trap and absorb light which contributes to the material's high efficiency when operated at higher temperatures.


Concentrating solar power (CSP) is an emerging alternative clean energy market that produces approximately 3.5 gigawatts worth of power at power plants around the globe—enough to power more than 2 million homes, with additional construction in progress to provide as much as 20 gigawatts of power in coming years. One of the technology's attractions is that it can be used to retrofit existing power plants that use coal or fossil fuels because it uses the same process to generate electricity from steam.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Making designer mutants in all kinds of model organisms

Making designer mutants in all kinds of model organisms | Amazing Science | Scoop.it

Recent advances in the targeted modification of complex eukaryotic genomes have unlocked a new era of genome engineering. From the pioneering work using zinc-finger nucleases (ZFNs), to the advent of the versatile and specific TALEN systems, and most recently the highly accessible CRISPR/Cas9 systems, we now possess an unprecedented ability to analyze developmental processes using sophisticated designer genetic tools. Excitingly, these robust and simple genomic engineering tools also promise to revolutionize developmental studies using less well established experimental organisms.


Modern developmental biology was born out of the fruitful marriage between traditional embryology and genetics. Genetic tools, together with advanced microscopy techniques, serve as the most fundamental means for developmental biologists to elucidate the logistics and the molecular control of growth, differentiation and morphogenesis. For this reason, model organisms with sophisticated and comprehensive genetic tools have been highly favored for developmental studies. Advances made in developmental biology using these genetically amenable models have been well recognized. The Nobel prize in Physiology or Medicine was awarded in 1995 to Edward B. Lewis, Christiane Nüsslein-Volhard and Eric F. Wieschaus for their discoveries on the ‘Genetic control of early structural development’ usingDrosophila melanogaster, and again in 2002 to John Sulston, Robert Horvitz and Sydney Brenner for their discoveries of ‘Genetic regulation of development and programmed cell death’ using the nematode worm Caenorhabditis elegans. These fly and worm systems remain powerful and popular models for invertebrate development studies, while zebrafish (Danio rerio), the dual frog species Xenopus laevis and Xenopus tropicalis, rat (Rattus norvegicus), and particularly mouse (Mus musculus) represent the most commonly used vertebrate model systems. To date, random or semi-random mutagenesis (‘forward genetic’) approaches have been extraordinarily successful at advancing the use of these model organisms in developmental studies. With the advent of reference genomic data, however, sequence-specific genomic engineering tools (‘reverse genetics’) enable targeted manipulation of the genome and thus allow previously untestable hypotheses of gene function to be addressed.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Fact or Fiction?: Mammoths Can Be Brought Back from Extinction

Fact or Fiction?: Mammoths Can Be Brought Back from Extinction | Amazing Science | Scoop.it

In a petri dish in the bowels of Harvard Medical School scientists have tweaked three genes from the cells of an Asian elephant that help control the production of hemoglobin, the protein in blood that carries oxygen. Their goal is to make these genes more like those of an animal that last walked the planet thousands of years ago: the woolly mammoth.

"Asian elephants are closer to mammoths than either is to African elephants, yet quite different in appearance and temperature range," notes Harvard geneticist and technology developer George Church. "We are not trying to make an exact copy of a mammoth, but rather a cold-resistant elephant."
 
But what if the new—and fast advancing—techniques of genome editing allowed scientists to engineer not only cold-resistance traits but also other characteristics of the woolly mammoth into its living Asiatic relatives? Scientists have found mammoth cells preserved in permafrost. If they were to recover cells with intact DNA, they could theoretically “edit” an Asian elephant’s genome to match the woolly mammoth’s. A single cell contains the complete genetic instruction set for its species, and by replicating that via editing a new individual can, theoretically, be created. But wouldsuch a hybrid—scion of an Asian elephant mother and genetic tinkerers—count as a true woolly mammoth?
 
In other words, is de-extinction a real possibility?
 
The answer is yes. On January 6, 2000, a falling tree killed the last bucardo, a wild Iberian ibex, which is a goatlike animal. Her name was Celia. On July 30, 2003, Celia's clone was born. To make the clone scientists removed the nucleus of a cell from Celia intact and inserted it into the unfertilized egg cell of another kind of ibex. They then transferred the resulting embryo to the womb of a living goat. Nearly a year later theydelivered the clone by cutting her from her mother.
 
Although she lived for a scant seven minutes due to lung defects, Celia’s clone proved that not only is de-extinction real, "it has already happened," in the words of environmentalist Stewart Brand, whose San Francisco-based Long Now Foundation is funding some of this de-extinction research, including Church's effort as well as bids to bring back the passenger pigeon and heath hen, among other candidate species. Nor is the bucardo alone in the annals of de-extinction. Several viruses have already been brought back, including the flu variant responsible for the 1918 pandemic that killed more than 20 million people worldwide.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New compounds decrease inflammation associated with ulcerative colitis, arthritis and multiple sclerosis

New compounds decrease inflammation associated with ulcerative colitis, arthritis and multiple sclerosis | Amazing Science | Scoop.it

Six Case Western Reserve scientists are part of an international team that has discovered two compounds that show promise in decreasing inflammation associated with diseases such as ulcerative colitis, arthritis and multiple sclerosis. The compounds, dubbed OD36 and OD38, specifically appear to curtail inflammation-triggering signals from RIPK2 (serine/threonine/tyrosine kinase 2). RIPK2 is an enzyme that activates high-energy molecules to prompt the immune system to respond with inflammation. The findings of this research appear in the Journal of Biological Chemistry.

“This is the first published indication that blocking RIPK2 might be efficacious in inflammatory disease,” said senior author Derek Abbott, MD, PhD, associate professor of pathology, Case Western Reserve University School of Medicine. “Our data provides a strong rationale for further development and optimization of RIPK2-targeted pharmaceuticals and diagnostics.”

In addition to Abbott and his medical school colleagues, the research team included representatives of Oncodesign, a therapeutic molecule biotechnology company in Dijon, France; Janssen Research & Development, a New Jersey-based pharmaceutical company; and Asclepia Outsourcing Solutions, a Belgium-based medicinal chemistry company.

The normal function of RIPK2 is to send warning signals to cells that bacterial infection has occurred, which in turn spurs the body to mobilize white blood cells. The white blood cells identify and encircle pathogens, which cause blood to accumulate in the region. It is this blood build-up that leads to the red and swollen areas characteristic of inflammation. When this process goes awry, the inflammation increases dramatically and tissue destruction ensues. RIPK2 works in conjunction with NOD1 and NOD2 (nucleotide-binding oligomerization domain) proteins in controlling responses by the immune system that lead to this inflammation process.

In this research project, investigators applied state-of-the-art genetic sequencing to learn the unique set of genes driven specifically by NOD2 proteins. They ultimately zeroed in on three specific NOD2-driven inflammation genes (SLC26a, MARCKSL1, and RASGRP1) that guided investigators in finding the most effective compounds.

Oncodesign searched its library of 4,000 compounds that targeted kinases, and after exhaustive study, narrowed the selection down to 13. Then investigators tested the 13 compounds in mouse and human cells and found that two compounds, OD36 and OD38, were most effective in blocking RIPK2. 

“Based on the design of OD36 and OD38, we have developed with Oncodesign fifth-generation compounds that are even more effective than the first-generation OD36 and OD38,” Abbott said. “Our next step is to seek a larger pharmaceutical company that can move these compounds forward into Phase 1 clinical trials in humans.”

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Integrating laser diode and ultrasound transducer array to build compact medical imaging device

Integrating laser diode and ultrasound transducer array to build compact medical imaging device | Amazing Science | Scoop.it

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two medical imaging technologies in a compact device is designed, among other things, to enable the amount of inflammation in rheumatic patients' joints to be measured more simply and precisely. The researchers expect that the technology will eventually also be able to play a role in detecting the severity of burns, skin cancer and furring of the arteries. The prototype is presented in the scientific journal Optics Express.


Echoscopy and photoacoustics are complementary medical imaging technologies. Photoacoustics involves sending brief laser pulses into the patient's body. When the laser light hits a blood vessel, for example, it is locally converted into heat, which causes a minor rise in pressure. This propagates through the body like a sound wave and can then be measured on the skin. Echoscopy involves sending ultrasound waves into the body: different tissues reflect them in different ways, and they too can then be detected on the skin. Whereas echoscopy provides an image of structures, photoacoustics can provide an image containing more functional information, such as the presence of blood.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Bacteria Make Drug-Like Molecules in Humans: Over 14,000 biosynthetic Gene Clusters for Small Molecules Identified

Bacteria Make Drug-Like Molecules in Humans: Over 14,000 biosynthetic Gene Clusters for Small Molecules Identified | Amazing Science | Scoop.it

Small molecules encoded by biosynthetic gene clusters are widely used in the clinic and constitute much of the chemical language of interspecies interactions. In a recent study, researchers used a systematic approach to identify more than 3,000 small-molecule biosynthetic gene clusters in the genomes of human-associated bacteria. As reported in Cell, they discovered that biosynthetic gene clusters for thiopeptides—a class of antibiotics—are widely distributed in the genomes of the human microbiota.


“This study shows for the first time that our microbiota—the good microbes that live with humans—produce drug-like molecules to protect us from pathogens,” said lead study author Mohamed Donia of the University of California, San Francisco (UCSF). “For a long time, scientists used to go to remote and exotic places to find bacteria that produce novel chemical entities with drug-like properties. Who knew we could find similar ones in our own bodies?”


Donia and his collaborators used an algorithm they recently developed to systematically analyze about 2,400 reference genomes of the human microbiota from various body sites. They detected more than 14,000 biosynthetic gene clusters for a broad range of small-molecule classes. Reasoning that the products of these gene clusters are most likely to mediate conserved microbe-host and microbe-microbe interactions, they set out to identify the subset of gene clusters commonly found in healthy individuals by analyzing 752 metagenomic samples from the National Institutes of Health Human Microbiome Project.


Remarkably, nearly all of these gene clusters had never before been studied or even described, illustrating how little is known about their small-molecule products. “We need to study every single one of these molecules and understand what they are doing,” Donia said. “We have published the list of the small molecule-encoding genes that we identified, and we are reaching out to the scientific community to help us characterize them.”


Thiopeptides are perhaps the most interesting of these molecules because they have potent antibacterial activity against Gram-positive species. Currently, one semisynthetic member of this class is undergoing clinical trials for treating bacterial infections. But according to the authors, no thiopeptide biosynthetic gene cluster or small-molecule product from the human microbiome had ever been experimentally characterized. Surprisingly, their analysis revealed thiopeptide-like biosynthetic gene clusters in isolates from every human body site.


Donia and his collaborators went on to purify and solve the structure of a thiopeptide named lactocillin, which showed potent antibacterial activity against a range of Gram-positive vaginal pathogens. By analyzing human metatranscriptomic sequencing data, they showed that lactocillin and other thiopeptide biosynthetic gene clusters were expressed in vivo, suggesting a potential role in mediating microbe-microbe interactions.

more...
Shang Zhuo's curator insight, October 25, 2014 9:04 AM

We can find antibiotics from our own body! It is really fascinating news. Perhaps the microbiota in our gut is a good source of bioactive molecules but is ignored by scientists for a long time.

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Geneticist George Church: A Future Without Limits

Geneticist George Church: A Future Without Limits | Amazing Science | Scoop.it

In the future, George Church believes, almost everything will be better because of genetics. If you have a medical problem, your doctor will be able to customize a treatment based on your specific DNA pattern. When you fill up your car, you won't be draining the world's dwindling supply of crude oil, because the fuel will come from microbes that have been genetically altered to produce biofuel. When you visit the zoo, you'll be able to take your children to the woolly mammoth or passenger pigeon exhibits, because these animals will no longer be extinct. You'll be able to do these things, that is, if the future turns out the way Church envisions it—and he's doing everything he can to see that it does.


In 2005 he launched the Personal Genome Project, with the goal of sequencing and sharing the DNA of 100,000 volunteers. With an open-source database of that size, he believes, researchers everywhere will be able to meaningfully pursue the critical task of correlating genetic patterns with physical traits, illnesses, and exposure to environmental factors to find new cures for diseases and to gain basic insights into what makes each of us the way we are. Church, tagged as subject hu43860C, was first in line for testing. Since then, more than 13,000 people in the U.S., Canada, and the U.K. have volunteered to join him, helping to establish what he playfully calls the Facebook of DNA.


Church has made a career of defying the impossible. Propelled by the dizzying speed of technological advancement since then, the Personal Genome Project is just one of Church's many attempts to overcome obstacles standing between him and the future.


"It's not for everyone," he says. "But I see a trend here. Openness has changed since many of us were young. People didn't use to talk about sexuality or cancer in polite society. This is the Facebook generation." If individuals were told which diseases or medical conditions they were genetically predisposed to, they could adjust their behavior accordingly, he reasoned. Although universal testing still isn't practical today, the cost of sequencing an individual genome has dropped dramatically in recent years, from about $7 million in 2007 to as little as $1,000 today.


"It's all too easy to dismiss the future," he says. "People confuse what's impossible today with what's impossible tomorrow.", especially through the emerging discipline of "synthetic" biology. The basic idea behind synthetic biology, he explained, was that natural organisms could be reprogrammed to do things they wouldn't normally do, things that might be useful to people. In pursuit of this, researchers had learned not only how to read the genetic code of organisms but also how to write new code and insert it into organisms. Besides making plastic, microbes altered in this way had produced carpet fibers, treated wastewater, generated electricity, manufactured jet fuel, created hemoglobin, and fabricated new drugs. But this was only the tip of the iceberg, Church wrote. The same technique could also be used on people.


"Every cell in our body, whether it's a bacterial cell or a human cell, has a genome," he says. "You can extract that genome—it's kind of like a linear tape—and you can read it by a variety of methods. Similarly, like a string of letters that you can read, you can also change it. You can write, you can edit it, and then you can put it back in the cell."


This April, the Broad Institute, where Church holds a faculty appointment, was awarded a patent for a new method of genome editing called CRISPR (clustered regularly interspersed short palindromic repeats), which Church says is one of the most effective tools ever developed for synthetic biology. By studying the way that certain bacteria defend themselves against viruses, researchers figured out how to precisely cut DNA at any location on the genome and insert new material there to alter its function. Last month, researchers at MIT announced they had used CRISPR to cure mice of a rare liver disease that also afflicts humans. At the same time, researchers at Virginia Tech said they were experimenting on plants with CRISPR to control salt tolerance, improve crop yield, and create resistance to pathogens.


The possibilities for CRISPR technology seem almost limitless, Church says. If researchers have stored a genetic sequence in a computer, they can order a robot to produce a piece of DNA from the data. That piece can then be put into a cell to change the genome. Church believes that CRISPR is so promising that last year he co-founded a genome-editing company, Editas, to develop drugs for currently incurable diseases.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas

Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas | Amazing Science | Scoop.it

Researchers have hijacked a defense system normally used by bacteria to fend off viral infections and redirected it against the human papillomavirus (HPV), the virus that causes cervical, head and neck, and other cancers.

Using the genome editing tool known as CRISPR, the Duke University researchers were able to selectively destroy two viral genes responsible for the growth and survival of cervical carcinoma cells, causing the cancer cells to self-destruct.

The findings, published in the Journal of Virology, give credence to an approach only recently attempted in mammalian cells, and could pave the way toward antiviral strategies targeted against other DNA-based viruses like hepatitis B and herpes simplex. 


"Because this approach is only going after viral genes, there should be no off-target effects on normal cells," said Bryan R. Cullen, Ph.D., senior study author and professor of molecular genetics and microbiology at Duke University School of Medicine. "You can think of this as targeting a missile that will destroy a certain target. You put in a code that tells the missile exactly what to hit, and it will only hit that, and it won't hit anything else because it doesn't have the code for another target."


In this study, Cullen decided to target the human papillomavirus (HPV), which causes almost all cervical cancers and about half of head and neck cancers. Specifically, he and his colleagues went after the viral genes E6 and E7, two "oncogenes" that block the host's own efforts to keep cancer cells at bay.


To run CRISPR against the virus, the researchers needed two ingredients. First, they needed the target code for E6 or E7, consisting of a short strip of RNA sequence, the chemical cousin of DNA. To this "guide RNA" they added the Cas9 protein, which would cut any DNA that could line up and bind to that RNA sequence.

The carcinoma cells that received the anti-HPV guide RNA/Cas9 combination immediately stopped growing. In contrast, cells that had received a control virus, containing a random guide RNA sequence, continued on their path to immortality. The researchers then dug down to the molecular level to investigate the consequences of destroying E6 or E7 in cancer cells. E6 normally blocks a protein called p53, known as the guardian of the genome because it can turn on suicide pathways in the cell when it senses that something has gone awry. In this study, targeting E6 enabled p53 to resume its normal function, spurring death of the cancer cell.


E7 works in a similar way, blocking another protein called retinoblastoma or Rb that can trigger growth arrest and senescence, another form of cell death. As expected, the researchers found that targeting E7 also set this second "tumor suppressor" back in motion.


"As soon as you turn off E6 or E7, the host defense mechanisms are allowed to come back on again, because they have been there this whole time, but they have been turned off by HPV," Cullen said. "What happens is the cell immediately commits suicide."


Cullen and his colleagues are now working on developing a different viral vector, based on the adeno-associated virus, to deliver their CRISPR cargo into cancer cells. Once they are happy with their delivery system, they will begin to test this approach in animal models.


"What we would hope to see in an HPV-induced cancer is rapid induction of tumor necrosis caused by loss of E6 or E7," Cullen said. "This method has the potential to be a single hit treatment that will dramatically reduce tumor load without having any effect on normal cells."


The researchers are also targeting other viruses that use DNA as their genetic material, including the hepatitis B virus and herpes simplex virus.


Reference: "Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas RNA-guided endonuclease," Edward M. Kennedy, Anand V. R. Kornepati, Michael Goldstein, Hal P. Bogerd, Brigid C. Poling, Adam W. Whisnant, Michael B. Kastan and Bryan R. Cullen.Journal of Virology, August 6, 2014. DOI 10.1128/JVI.01879-14.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Madagascar's bark spider (Caerostris darwini) makes up to 82 feet large orb nets, 10 x stronger than Kevlar

Madagascar's bark spider (Caerostris darwini) makes up to 82 feet large orb nets, 10 x stronger than Kevlar | Amazing Science | Scoop.it

The web of the Darwin's bark spider (Caerostris darwini), can span some square feet (2.8 square meters) and is attached to each riverbank by anchor threads as long as 82 feet (25 meters).


Scientists have found the toughest material made by life yet — the silk of a spider whose giant webs span rivers, streams and even lakes. Spider silks were already the toughest known biomaterials, able to absorb massive amounts of energy before breaking. However, researchers have now revealed the Darwin's bark spider (Caerostris darwini) has the toughest silk ever seen — more than twice as tough as any previously described silk, and more than 10 times stronger than Kevlar.


Although scientists have investigated silks from 20-to-30 species of spiders before, most of these were chosen haphazardly — for instance, from researchers' backyards. There are over 40,000 species of spiders and each spider can produce up to seven different kinds of silk. Thus, more than 99.99 percent of spider silks are yet to be explored.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Oceans experiencing largest sea level rise in 6,000 years, study says

Oceans experiencing largest sea level rise in 6,000 years, study says | Amazing Science | Scoop.it

There are two main forces that can drive sea levels higher. One is something called thermal expansion, which involves the expansion of ocean water as it warms. The other is an influx of additional water, ushered into the sea by melting ice sheets and glaciers. Scientists have long concluded that sea levels are rising. Just look at Miami. Or the Maldives. They’ve also discerned that major ice sheets are melting at a faster clip than previously understood.


What has been less clear, however, is whether the development is recent or not. Over the last several thousands of years, has the ocean risen and fallen and risen again? A new study, just published in PNAS, suggests that the ocean has been surprisingly static since 4,000 B.C..


But that changed 150 years ago. Reconstructing 35,000 years of sea fluctuations, the study, which researchers say is the most comprehensive of its kind, found that the oceans are experiencing greater sea rise than at any time over the last 6,000 years. “What we see in the tide gauges, we don’t see in the past record, so there’s something going on today that’s wasn’t going on before,” lead author Kurt Lambeck, a professor at Australian National University, told the Australia Broadcasting Corporation. “I think that is clearly the impact of rising temperatures.”


How much has the sea risen over the past century and a half? A lot. And it’s surging faster than ever. “There is robust evidence that sea levels have risen as a result of climate change,” Australian government research has found. “Over the last century, global average sea level rose by 1.7 mm [0.067 inches] per year, in recent years (between 1993 and 2010), this rate has increased to 3.2 mm [0.126 inches] per year.” In all, the sea has risen roughly 20 centimeters since the start of the 20th century. “The rate of sea level rise over the last century is unusually high in the context of the last 2,000 years,” the Australian report added.


But it’s not just the last 2,000 years. It’s the last 6,000 years, according to this recent study. And now, the rising sea levels over the last 100 years, is “beyond dispute,” Lambeck explained.

more...
NERONYC's curator insight, October 19, 2014 6:04 PM

Preserve our invironment