Amazing Science
796.9K views | +12 today
 
Scooped by Dr. Stefan Gruenwald
onto Amazing Science
Scoop.it!

Chemical process turns any plant matter—even trees—into biofuels

Chemical process turns any plant matter—even trees—into biofuels | Amazing Science | Scoop.it

Biofuel production focuses on taking the carbon that's already present in plants and converting it into burnable carbon-based fuels. Most of the carbon in a plant comes in the form of sugars, which can be readily converted into ethanol and less readily modified into other fuels.


Sugar is relatively easy to obtain from things like fruit and seeds, but those are also the sorts of things we like to eat. Most of the sugar in the rest of a plant, however, is locked into a complex polymer called cellulose. Figuring out a way to easily break down cellulose has been one of the major hurdles to the expansion of biofuels.


Now, researchers from the University of Wisconsin–Madison have figured out a chemical treatment that, given a bit of time, can completely dissolve any plant matter including wood. The end result is a solution containing mostly sugars, along with a few other organic molecules—some of which can be shunted off to synthesize the key ingredient of the chemical treatment itself.


The key ingredient in the chemical treatment is gamma-valerolactone, a ring-shaped molecule that incorporates an oxygen in its ring. On its own, this seems to be able to loosen up the cellulose and make it more accessible for chemical reactions. But it doesn't break it down into the individual sugars it's composed of. To do that, the researchers had to add some dilute sulfuric acid along with a bit of water (20 percent of the final solution) to keep everything in solution.


Essentially, that mixture gets sent into a heated reaction chamber stuffed with any kind of plant matter—the authors tested corn stalks after the corn had been harvested, as well as poplar and maple. If the solution is allowed to flow slowly through the reaction chamber, then it will completely break the plant material down into a mixture of sugars.


The only solid material that's left is a small bit of particulate debris.

When the resulting sugar-rich solution comes out of the far end of the chamber, mixing it with a solution of table salt is enough to extract almost all of the sugar into a water solution. That solution can then be fed to yeast, which will convert it to ethanol. The remaining organic compounds stay in the organic phase. The gamma-valerolactone can then be pulled out of the organic solution and reused; the rest can be used as a chemical feedstock for other reactions—including the synthesis of gamma-valerolactone.


The researchers also found that they could speed up the reaction a bit, use a somewhat lower heat, and still extract a lot of sugar. The remaining plant matter can just be left in the reaction chamber when more material is added; if it wasn't broken down the first time, it's likely to be on the second pass.


The conversion into ethanol currently requires a fairly high degree of purification, but the authors are working on evolving a strain of yeast that operates efficiently in the solution as it comes out of the reactor. If that works out, then it will raise the efficiency of the process as a whole a bit.


And that's rather important, since they estimate that the ethanol produced by this process will be competitive as a fuel at a cost of just under $5.00. That's competitive with the enzymatic breakdown of plant material, which also liberates sugar for ethanol production. And, as noted above, neither of these processes competes with crops—in fact, they can use some of the byproducts of crops.

more...
No comment yet.
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

20,000+ FREE Online Science and Technology Lectures from Top Universities

20,000+ FREE Online Science and Technology Lectures from Top Universities | Amazing Science | Scoop.it

FOR FULL GENOME SEQUENCING CONTACT DIAGNOMICS

(www.diagnomics.com)

Toll Free:1-800-605-8422  FREE
Regular Line:1-858-345-4817

  

 

NOTE: To subscribe to the RSS feed of Amazing Science, copy http://www.scoop.it/t/amazing-science/rss.xml into the URL field of your browser and click "subscribe".

 

This newsletter is aggregated from over 1450 news sources:

http://www.genautica.com/links/1450_news_sources.html

 

All my Tweets and Scoop.It! posts sorted and searchable:

http://www.genautica.com/tweets/index.html

 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

You can search through all the articles semantically on my

archived twitter feed

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

NOTE: All articles in the amazing-science newsletter can also be sorted by topic. To do so, click the FIND buntton (symbolized by the FUNNEL on the top right of the screen)  and display all the relevant postings SORTED by TOPICS.

 

You can also type your own query:

 

e.g., you are looking for articles involving "dna" as a keyword

 

http://www.scoop.it/t/amazing-science/?q=dna

 

Or 

CLICK on the little

FUNNEL symbol at the

 

==================================================

 

***MOST READS***

• 3D-printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciencesgreen-energy • history • language • mapmaterial-science • math • med • medicine • microscopymost-reads • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video 

more...
Arturo Pereira's curator insight, August 12, 9:01 AM
The democratization of knowledge!
Nevermore Sithole's curator insight, September 11, 2:42 AM
FREE Online Science and Technology Lectures from Top Universities
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Recordings of C. elegans locomotor behavior after targeted ablation of single motorneurons

Recordings of C. elegans locomotor behavior after targeted ablation of single motorneurons | Amazing Science | Scoop.it

Lesioning studies have provided important insight into the functions of brain regions in humans and other animals. In the nematode Caenorhabditis elegans, with a small nervous system of 302 identified neurons, it is possible to generate lesions with single cell resolution and infer the roles of individual neurons in behavior.

 

Scientists now present a dataset of ~300 video recordings representing the locomotor behavior of animals carrying single-cell ablations of 5 different motorneurons. Each file includes a raw video of approximately 27,000 frames; each frame has also been segmented to yield the position, contour, and body curvature of the tracked animal. These recordings can be further analyzed using publicly-available software to extract features relevant to behavioral phenotypes. This dataset therefore represents a useful resource for probing the neural basis of behavior in C. elegans, a resource we hope to augment in the future with ablation recordings for additional neurons.

more...
No comment yet.
Rescooped by Dr. Stefan Gruenwald from levin's linkblog: Knowledge Channel
Scoop.it!

A giant insect ecosystem is collapsing due to humans. It's a catastrophe

A giant insect ecosystem is collapsing due to humans. It's a catastrophe | Amazing Science | Scoop.it
Insects have triumphed for hundreds of millions of years in every habitat but the ocean. Their success is unparalleled, which makes their disappearance all the more alarming

 

Thirty-five years ago an American biologist Terry Erwin conducted an experiment to count insect species. Using an insecticide “fog”, he managed to extract all the small living things in the canopies of 19 individuals of one species of tropical tree, Luehea seemannii, in the rainforest of Panama. He recorded about 1,200 separate species, nearly all of them coleoptera (beetles) and many new to science; and he estimated that 163 of these would be found on Luehea seemannii only.

 

He calculated that as there are about 50,000 species of tropical tree, if that figure of 163 was typical for all the other trees, there would be more than eight million species, just of beetles, in the tropical rainforest canopy; and as beetles make up about 40% of all the arthropods, the grouping that contains the insects and the other creepy-crawlies from spiders to millipedes, the total number of such species in the canopy might be 20 million; and as he estimated the canopy fauna to be separate from, and twice as rich as, the forest floor, for the tropical forest as a whole the number of species might be 30 million.

 

Yes, 30 million. It was one of those extraordinary calculations, like Edwin Hubble’s of the true size of the universe, which sometimes stop us in our tracks. Erwin reported that he was shocked by his conclusions and entomologists have argued over them ever since. But about insects, his findings make two things indisputably clear. One is that there are many, many more types than the million or so hitherto described by science, and probably many more than the 10m species sometimes postulated as an uppermost figure; and the second is that this is far and away the most successful group of creatures the Earth has ever seen.

 

Via Levin Chin
more...
No comment yet.
Rescooped by Dr. Stefan Gruenwald from Popular Science
Scoop.it!

Scientists Are Rewriting the History of Photosynthesis

Scientists Are Rewriting the History of Photosynthesis | Amazing Science | Scoop.it

Researchers have caught their best glimpse yet into the origins of photosynthesis, one of nature’s most momentous innovations. By taking near-atomic, high-resolution X-ray images of proteins from primitive bacteria, investigators at Arizona State University and Pennsylvania State University have extrapolated what the earliest version of photosynthesis might have looked like nearly 3.5 billion years ago. If they are right, their findings could rewrite the evolutionary history of the process that life uses to convert sunlight into chemical energy.


Via Neelima Sinha
more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Petals produce a 'blue halo' that helps bees find flowers

Petals produce a 'blue halo' that helps bees find flowers | Amazing Science | Scoop.it

New study finds “messy” microscopic structures on petals of some flowers manipulate light to produce a blue color effect that is easily seen by bee pollinators. Researchers say these petal grooves evolved independently multiple times across flowering plants, but produce the same result: a floral halo of blue-to-ultraviolet light.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

NASA Improves Search for Habitable Worlds

NASA Improves Search for Habitable Worlds | Amazing Science | Scoop.it

“Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study,” said Yuka Fujii of NASA’s Goddard Institute for Space Studies (GISS), New York, New York and the Earth-Life Science Institute at the Tokyo Institute of Technology, Japan, lead author of a paper on the research published in the Astrophysical Journal Oct. 17, 2017.

 

Previous models simulated atmospheric conditions along one dimension, the vertical. Like some other recent habitability studies, the new research used a model that calculates conditions in all three dimensions, allowing the team to simulate the circulation of the atmosphere and the special features of that circulation, which one-dimensional models cannot do. The new work will help astronomers allocate scarce observing time to the most promising candidates for habitability.

 

Liquid water is necessary for life as we know it, so the surface of an alien world (e.g. an exoplanet) is considered potentially habitable if its temperature allows liquid water to be present for sufficient time (billions of years) to allow life to thrive. If the exoplanet is too far from its parent star, it will be too cold, and its oceans will freeze. If the exoplanet is too close, light from the star will be too intense, and its oceans will eventually evaporate and be lost to space. This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star. The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a “moist greenhouse” state because of their humid stratospheres.

 

In order for water vapor to rise to the stratosphere, previous models predicted that long-term surface temperatures had to be greater than anything experienced on Earth – over 150 degrees Fahrenheit (66 degrees Celsius). These temperatures would power intense convective storms; however, it turns out that these storms aren’t the reason water reaches the stratosphere for slowly rotating planets entering a moist greenhouse state.

 

“We found an important role for the type of radiation a star emits and the effect it has on the atmospheric circulation of an exoplanet in making the moist greenhouse state,” said Fujii. For exoplanets orbiting close to their parent stars, a star’s gravity will be strong enough to slow a planet’s rotation. This may cause it to become tidally locked, with one side always facing the star – giving it eternal day – and one side always facing away –giving it eternal night.

 

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

200 Earth masses of gold and 500 Earth masses of platinum from a neutron star merger

200 Earth masses of gold and 500 Earth masses of platinum from a neutron star merger | Amazing Science | Scoop.it
What many thought would be a long way off, the detection of gravitational waves from the merger of binary neutron stars, actually happened on Aug. 17. The observation of a blue and then red glow from the radioactive debris cloud left behind matched simulations of what the merger should look like, proving that such mergers are the source of most of the very heavy elements in the universe, including gold.

 

While hydrogen and helium were formed in the Big Bang 13.8 billion years ago, heavier elements like carbon and oxygen were formed later in the cores of stars through nuclear fusion of hydrogen and helium. But this process can only build elements up to iron. Making the heaviest elements requires a special environment in which atoms are repeatedly bombarded by free neutrons. As neutrons stick to the atomic nuclei, elements higher up the periodic table are built.

 

Where and how this process of heavy element production occurs has been one of the longest-standing questions in astrophysics. Recent attention has turned to neutron star mergers, where the collision of the two stars flings out clouds of neutron-rich matter into space, where they could assemble into heavy elements.

 

Speculation that astronomers might see light from such heavy elements traces back to the 1990s, but the idea had mostly been gathering dust until 2010, when Brian Metzger, then a freshly minted graduate student at UC Berkeley, now a professor of astrophysics at Columbia University, co-authored a paper with Quataert and Kasen in which they calculated the radioactivity of the neutron star debris and estimated its brightness for the first time.

 

"As the debris cloud expands into space," Metzger said, "the decay of radioactive elements keeps it hot, causing it to glow."

Metzger, Quataert, Kasen and collaborators showed that this light from neutron star mergers was roughly one thousand times brighter than normal nova explosions in our galaxy, motivating them to name these exotic flashes "kilonovae." Still, basic questions remained as to what a kilonova would actually look like.

 

"Neutron star merger debris is weird stuff -- a mixture of precious metals and radioactive waste," Kasen said. Astronomers know of no comparable phenomena, so Kasen and collaborators had to turn to fundamental physics and solve mathematical equations describing how the quantum structure of heavy atoms determines how they emit and absorb light.

 

Jennifer Barnes, an Einstein postdoctoral fellow at Columbia, worked as a Berkeley graduate student with Kasen to make some of the first detailed predictions of what a kilonova should look like. "When we calculated the opacities of the elements formed in a neutron star merger, we found a lot of variation. The lighter elements were optically similar to elements found in supernovae, but the heavier atoms were more than a hundred times more opaque than what we're used to seeing in astrophysical explosions," said Barnes. "If heavy elements are present in the debris from the merger, their high opacity should give kilonovae a reddish hue."

 

"I think we bummed out the entire astrophysics community when we first announced that," Kasen said. "We were predicting that a kilonova should be relatively faint and redder than red, meaning it would be an incredibly difficult thing to find. On the plus side, we had defined a smoking-gun -- you can tell that you are seeing freshly produced heavy elements by their distinctive red color." That is just what astronomers observed.

 

The August LIGO/Virgo discovery of a neutron star merger meant that "judgment day for the theorists would come sooner than expected," Kasen said. "For years the idea of a kilonova had existed only in our theoretical imagination and our computer models," he said. "Given the complex physics involved, and the fact that we had essentially zero observational input to guide us, it was an insanely treacherous prediction -- the theorists were really sticking their necks out." But as the data trickled in, one night after the next, the images began to assemble into a surprisingly familiar picture.

On the first couple nights of observations, the color of the merger event was relatively blue with a brightness that matched the predictions of kilonova models strikingly well if the outer layers of the merger debris are made of light precious elements such as silver. However, over the ensuing days the emission became increasingly red, a signature that the inner layers of the debris cloud also contain the heaviest elements, such as platinum, gold and uranium.

 

"Perhaps the biggest surprise was how well-behaved the visual signal acted compared to our theoretical expectations," Metzger noted. "No one had ever seen a neutron star merger up close before. Putting together the complete picture of such an event involves a wide range of physics -- general relativity, hydrodynamics, nuclear physics, atomic physics. To combine all that and come up with a prediction that matches the reality of nature is a real triumph for theoretical astrophysics."

 

Kasen, who was also a member of observational teams that discovered and conducted follow-up observations of the source, recalled the excitement of the moment: "I was staying up past 3 a.m. night after night, comparing our models to the latest data, and thinking, 'I can't believe this is happening; I'm looking at something never before seen on Earth, and I think I actually understand what I am seeing.'"

 

Kasen and his colleagues have presented updated kilonova models and theoretical interpretations of the observations in a paper released Oct. 16 in advance of publication in Nature. Their models are also being used to analyze a wide-ranging set of data presented in seven additional papers appearing in Nature,Science and the Astrophysical Journal.

 

Not only did the observations confirm the theoretical predictions, but the modeling allowed Kasen and his colleagues to calculate the amount and chemical makeup of the material produced. The scientists inferred that around 6 percent of a solar mass of heavy elements were made. The yield of gold alone was around 200 Earth masses, and that of platinum nearly 500 Earth masses.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

As 'Flesh-Eating' Leishmania Come Closer, a Vaccine Against Them Does, Too

As 'Flesh-Eating' Leishmania Come Closer, a Vaccine Against Them Does, Too | Amazing Science | Scoop.it
A potentially deadly parasite that can ulcerate skin, nose, mouth and organs could someday meet its match in an experimental vaccine that has now worked in lab tests on humanized mice.

 

Parasites that ulcerate the skin, can disfigure the face, and can fatally mutilate internal organs are creeping closer to the southern edges of the United States. No vaccine is available against Leishmania yet, but researchers have now come closer to changing that. A new experimental vaccine, made with a proprietary biological particle developed at the Georgia Institute of Technology, has immunized laboratory mice that were genetically altered to mimic the human immune system.

 

The vaccine exploits a weakness in Leishmania’s tricky chemical camouflage, which normally hides it from the victim’s disease-fighting cells, to trigger a forceful immune response against the parasite, according to a new study.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Newfoundland populated multiple times by distinct groups, DNA evidence shows

Newfoundland populated multiple times by distinct groups, DNA evidence shows | Amazing Science | Scoop.it

Indigenous people have been on the far northeastern edge of Canada for most of the last 10,000 years, moving in shortly after the ice retreated from the Last Glacial Maximum. Archaeological evidence suggests that people with distinct cultural traditions inhabited the region at least three different times with a possible hiatus for a period between 2,000 and 3,000 years ago.

 

Now, researchers who've examined genetic evidence from mitochondrial DNA provide evidence that two of those groups, known as the Maritime Archaic and Beothuk, brought different matrilines to the island, adding further support to the notion that those groups had distinct population histories. The findings are published in Current Biology on October 12.

 

"Our paper suggests, based purely on mitochondrial DNA, that the Maritime Archaic were not the direct ancestors of the Beothuk and that the two groups did not share a very recent common ancestor," says Ana Duggan of McMaster University. "This in turn implies that the island of Newfoundland was populated multiple times by distinct groups."

 

The relationship between the older Maritime Archaic population and Beothuk hadn't been clear from the archaeological record. With permission from the current-day indigenous community, Duggan and her colleagues, led by Hendrik Poinar, examined the mitochondrial genome diversity of 74 ancient remains from the island together with the archaeological record and dietary isotope profiles. All samples were collected from tiny amounts of bone or teeth.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

‘Ridiculously healthy’ elderly have the same gut microbiome as healthy 30 year-olds

‘Ridiculously healthy’ elderly have the same gut microbiome as healthy 30 year-olds | Amazing Science | Scoop.it

In one of the largest microbiota studies conducted in humans, researchers atWestern University, Lawson Health Research Institute and Tianyi Health Science Institute in Zhenjiang, Jiangsu, China have shown a potential link between healthy aging and a healthy gut.

 

With the establishment of the China-Canada Institute, the researchers studied the gut bacteria in a cohort of more than 1,000 Chinese individuals in a variety of age-ranges from 3 to over 100 years-old who were self-selected to be extremely healthy with no known health issues and no family history of disease. The results showed a direct correlation between health and the microbes in the intestine.

 

“The aim is to bring novel microbiome diagnostic systems to populations, then use food and probiotics to try and improve biomarkers of health,” said Gregor Reid, PhD, professor at Western’s Schulich School of Medicine & Dentistry and Scientist at Lawson Health Research Institute. “It begs the question – if you can stay active and eat well, will you age better, or is healthy aging predicated by the bacteria in your gut?”

 

The study, published this month in the journal mSphere, showed that the overall microbiota composition of the healthy elderly group was similar to that of people decades younger, and that the gut microbiota differed little between individuals from the ages of 30 to over 100.

 

“The main conclusion is that if you are ridiculously healthy and 90 years old, your gut microbiota is not that different from a healthy 30 year old in the same population,” said Greg Gloor, PhD, the principal investigator on the study and also a professor at Western’s Schulich School of Medicine & Dentistry and Scientist at Lawson Health Research Institute. Whether this is cause or effect is unknown, but the study authors point out that it is the diversity of the gut microbiota that remained the same through their study group.

 

“This demonstrates that maintaining diversity of your gut as you age is a biomarker of healthy aging, just like low-cholesterol is a biomarker of a healthy circulatory system,” Gloor said. The researchers suggest that resetting an elderly microbiota to that of a 30-year-old might help promote health.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Collapse of Aztec society linked to catastrophic salmonella outbreak based on DNA evidence

Collapse of Aztec society linked to catastrophic salmonella outbreak based on DNA evidence | Amazing Science | Scoop.it
DNA of 500-year-old bacteria is first direct evidence of an epidemic — one of humanity's deadliest — that occurred after Spanish conquest.

 

One of the worst epidemics in human history, a sixteenth-century pestilence that devastated Mexico’s native population, may have been caused by a deadly form of salmonella from Europe, a pair of studies suggest.

 

In one study, researchers say they have recovered DNA of the stomach bacterium from burials in Mexico linked to a 1540s epidemic that killed up to 80% of the country's native inhabitants. The team reports its findings in a preprint posted on the bioRxiv server on 8 February1.

 

This is potentially the first genetic evidence of the pathogen that caused the massive decline in native populations after European colonization, says Hannes Schroeder, an ancient-DNA researcher at the Natural History Museum of Denmark in Copenhagen who was not involved in the work. “It’s a super-cool study.”

 

In 1519, when forces led by Spanish conquistador Hernando Cortés arrived in Mexico, the native population was estimated at about 25 million. A century later, after a Spanish victory and a series of epidemics, numbers had plunged to around 1 million.

 

The largest of these disease outbreaks were known as cocoliztli (from the word for ‘pestilence’ in Nahuatl, the Aztec language). Two major cocoliztli, beginning in 1545 and 1576, killed an estimated 7 million to 18 million people living in Mexico’s highland regions. “In the cities and large towns, big ditches were dug, and from morning to sunset the priests did nothing else but carry the dead bodies and throw them into the ditches,” noted a Franciscan historian who witnessed the 1576 outbreak.

 

There has been little consensus on the cause of cocoliztli — although measles, smallpox and typhus have all been mooted. In 2002, researchers at the National Autonomous University of Mexico (UNAM) in Mexico City proposed that a viral haemorrhagic fever, exacerbated by a catastrophic drought, was behind the carnage2. They compared the magnitude of the 1545 outbreak to that of the Black Death in fourteenth-century Europe. 

 
more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New imaging approach maps whole-brain changes from Alzheimer's disease in mice

New imaging approach maps whole-brain changes from Alzheimer's disease in mice | Amazing Science | Scoop.it

An estimated 5.5 million Americans live with Alzheimer's disease, a type of dementia that causes problems with memory, thinking and behavior. 

 

Optical visualization of pathological changes in Alzheimer’s disease (AD) can facilitate exploration of disease mechanisms and treatments. However, existing optical imaging methods have limitations on mapping pathological evolution in the whole mouse brain. Previous research indicated endogenous fluorescence contrast of senile plaques. Therefore, it is important to develop cryo-micro-optical sectioning tomography (cryo-MOST) to capture intrinsic fluorescence distribution of senile plaques at a micrometer-level resolution in the whole brain. Validation using immunofluorescence demonstrates the capacity of cryo-MOST to visualize and distinguish senile plaques with competent sensitivity and spatial resolution. Compared with imaging in room temperature, cryo-MOST provides better signal intensity and signal-to-noise ratio. Using cryo-MOST, the inventors obtained whole-brain coronal distribution of senile plaques in a transgenic mouse without exogenous dye. Capable of label-free brainwide visualization of Alzheimer’s pathology, cryo-MOST may be potentially useful for understanding neurodegenerative disease mechanisms and evaluating drug efficacy.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Baltic clams and worms release as much greenhouse gas as 20,000 dairy cows

Baltic clams and worms release as much greenhouse gas as 20,000 dairy cows | Amazing Science | Scoop.it
Scientists have shown that ocean clams and worms are releasing a significant amount of potentially harmful greenhouse gas into the atmosphere.

 

The team, from Cardiff University and Stockholm University, have shown that the ocean critters are producing large amounts of the strongest greenhouse gases - methane and nitrous oxides - from the bacteria in their guts. Methane gas is making its way into the water and then finally out into the atmosphere, contributing to global warming - methane has 28 times greater warming potential than carbon dioxide. A detailed analysis showed that around 10 per cent of total methane emissions from the Baltic Sea may be due to clams and worms.

 

The researchers estimate that this is equivalent to as much methane given off as 20,000 dairy cows. This is as much as 10 per cent of the entire Welsh dairy cow population and 1 per cent of the entire UK dairy cow population.

 

The findings, which have been published in the journal Scientific Reports, point to a so far neglected source of greenhouse gases in the sea and could have a profound impact on decision makers. It has been suggested that farming oysters, mussels and clams could be an effective solution against human pressures on the environment, such as eutrophication caused by the run-off of fertilizers into our waters. The authors warn that stakeholders should consider these potential impacts before deciding whether to promote shellfish farming to large areas of the ocean.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Blockchains: How They Work and Why They’ll Change the World

Blockchains: How They Work and Why They’ll Change the World | Amazing Science | Scoop.it
The technology behind Bitcoin could touch every transaction you ever make

 

Bitcoin was hatched as an act of defiance. Unleashed in the wake of the Great Recession, the cryptocurrency was touted by its early champions as an antidote to the inequities and corruption of the traditional financial system. They cherished the belief that as this parallel currency took off, it would compete with and ultimately dismantle the institutions that had brought about the crisis. Bitcoin’s unofficial catchphrase, “In cryptography we trust,” left no doubt about who was to blame: It was the middlemen, the bankers, the “trusted” third parties who actually couldn’t be trusted. These humans simply got in the way of other humans, skimming profits and complicating transactions.

 

Bitcoin sought to replace the services provided by these intermediaries with cryptography and code. When you use a check to pay your mortgage, a series of agreements occur in the background between your financial institution and others, enabling money to go from your account to someone else’s. Your bank can vouch that your money is good because it keeps records indicating where every penny in your account came from, and when.

 

Bitcoin and other cryptocurrencies replace those background agreements and transactions with software—specifically, a distributed and secure database called a blockchain. The process with which the ownership of a Bitcoin token will pass from one person to another—wherever they are, no matter what government they live under—is entrusted to a bunch of computers.

 

Now, eight years after the first blockchain was built, people are trying to apply it to procedures and processes beyond merely the moving of money with varying degrees of success. In effect, they’re asking, What other agreements can a blockchain automate? What other middlemen can blockchain technology retire?

 

Can a blockchain find people offering rides, link them up with people who are trying to go somewhere, and give the two parties a transparent platform for payment? Can a blockchain act as a repository and a replay platform for TV shows, movies, and other digital media while keeping track of royalties and paying content creators? Can a blockchain check the status of airline flights and pay travelers a previously agreed upon amount if their planes don’t take off on time?

 

If so, then blockchain technology could get rid of Uber, Netflix, and every flight-insurance provider on the market.

  • PEOPLE

    Satoshi Nakamoto

    If the blockchain were a religion, Satoshi would be God. This anonymous hacker is responsible for writing the Bitcoin white paper, releasing the first Bitcoin code, and inspiring legions of blockchain developers. Many have sought to reveal his/her/their identity, but to this day that information remains secret.

Those three proposed applications aren’t hypothetical—they’re just a few of the things now being built onEthereum, a blockchain platform that remotely executes software on a distributed computer system called the Ethereum Virtual Machine. In the blockchain universe, Ethereum, which has its own cryptocurrency, called ethers, is by far the project that is most open to experimentation. But zoom out and a diverse collection of potentially disruptive innovators floods into view. New groups are pitching blockchain schemes almost daily. And the tech world’s titans don’t plan to miss out: Microsoft is offering its customers tools to experiment with blockchain applications on its Azure cloud. IBM, Intel, and others are collaborating on an open-source blockchain initiative called Hyperledger, which aims to provide the bones for business-oriented blockchains. Meanwhile, many of the largest banks—the very institutions that blockchain pioneers were trying to neutralize—have cobbled together their own version of the technology in an attempt to stay ahead of the curve. And even Bitcoin, which runs on the first and most successful blockchain, is being retrofitted for applications its designers never dreamed of.

more...
No comment yet.
Rescooped by Dr. Stefan Gruenwald from Limitless learning Universe
Scoop.it!

The Reaper Botnet Has Already Infected a Million Networks

The Reaper Botnet Has Already Infected a Million Networks | Amazing Science | Scoop.it
Building on the devastating Mirai botnet that took major sites offline a year ago, Reaper has some scary new tricks.

 

The Mirai botnet, a collection of hijacked gadgets whose cyberattack made much of the internet inaccessible in parts of the US and beyond a year ago, previewed a dreary future of zombie connected-device armies run amuck. But in some ways, Mirai was relatively simple—especially compared to a new botnet that's brewing.

 

While Mirai caused widespread outages, it impacted IP cameras and internet routers by simply exploiting their weak or default passwords. The latest botnet threat, known as alternately as IoT Troop or Reaper, has evolved that strategy, using actual software-hacking techniques to break into devices instead. It's the difference between checking for open doors and actively picking locks—and it’s already enveloped devices on a million networks and counting.

 

Now, researchers at the Chinese security firm Qihoo 360 and the Israeli firm Check Point detailed the new IoT botnet, which builds on portions of Mirai’s code, but with a key difference: Instead of merely guessing the passwords of the devices it infects, it uses known security flaws in the code of those insecure machines, hacking in with an array of compromise tools and then spreading itself further. And while Reaper hasn’t been used for the kind of distributed denial of service attacks that Mirai and its successors have launched, that improved arsenal of features could potentially allow it to become even larger—and more dangerous—than Mirai ever was.

 

“The main differentiator here is that while Mirai was only exploiting devices with default credentials, this new botnet is exploiting numerous vulnerabilities in different IoT devices. The potential here is even bigger than what Mirai had,” says Maya Horowitz, the manager of Check Point’s research team. “With this version it’s much easier to recruit into this army of devices.”

 

The Reaper malware has pulled together a grab-bag of IoT hacking techniques that include nine attacks affecting routers from D-Link, Netgear, and Linksys, as well as internet-connected surveillance cameras, including those sold by companies like Vacron, GoAhead, and AVTech. While many of those devices have patches available, most consumers aren’t in the habit of patching their home network router, not to mention their surveillance camera systems.


Via Roger Smith, CineversityTV
more...
Roger Smith's curator insight, October 20, 10:39 PM

We oft forget how really vulnerable we are to being targeted by an automated system on the digital world (internet).   The bad guys regularly use them and they can target millions of people while they are asleep.


They see, they improve, they invest.   They treat it like a normal business transaction!

Rescooped by Dr. Stefan Gruenwald from Fragments of Science
Scoop.it!

Suicide small RNA molecules can kill cancer cells

Suicide small RNA molecules can kill cancer cells | Amazing Science | Scoop.it

Small RNA molecules originally developed as a tool to study gene function trigger a mechanism hidden in every cell that forces the cell to commit suicide, reports a new Northwestern Medicine study, the first to identify molecules to trigger a fail-safe mechanism that may protect us from cancer.

The mechanism—RNA suicide molecules—can potentially be developed into a novel form of cancer therapy, the study authors said. Cancer cells treated with the RNA molecules never become resistant to them because they simultaneously eliminate multiple genes that cancer cells need for survival. "It's like committing suicide by stabbing yourself, shooting yourself and jumping off a building all at the same time," said Northwestern scientist and lead study author Marcus Peter. "You cannot survive." The inability of cancer cells to develop resistance to the molecules is a first, Peter said.

 

"This could be a major breakthrough," noted Peter, the Tom D. Spies Professor of Cancer Metabolism at Northwestern University Feinberg School of Medicine. Peter and his team discovered sequences in the human genome that when converted into small double-stranded RNA molecules trigger what they believe to be an ancient kill switch in cells to prevent cancer. He has been searching for the phantom molecules with this activity for eight years.

 

"We think this is how multicellular organisms eliminated cancer before the development of the adaptive immune system, which is about 500 million years old," he said. "It could be a fail safe that forces rogue cells to commit suicide. We believe it is active in every cell protecting us from cancer."

 

This study, which will be published Oct. 24, 2017, in eLife, and two other new Northwestern studies in Oncotarget and Cell Cycle by the Peter group, describe the discovery of the assassin molecules present in multiple human genes and their powerful effect on cancer in mice.


Via Mariaschnee
more...
No comment yet.
Rescooped by Dr. Stefan Gruenwald from The first person to live 200 years has already been born.
Scoop.it!

Why Die?

How can we avoid aging and ultimately death? Only with intelligence, information and technology.


Via Khannea Suntzu
more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Ancient Microbes would have left "fingerprints" on Martian rocks

Ancient Microbes would have left "fingerprints" on Martian rocks | Amazing Science | Scoop.it

Archaeon can oxidize and metabolize metals from Mars Regolith simulants, is the finding of a new study.

 

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist and astrobiologist investigates these signatures at her own miniaturized "Mars farm" where she can observe interactions between the archaeon Metallosphaera sedula and Mars-like rocks. These microbes are capable of oxidizing and integrating metals into their metabolism. The original research was currently published in the journal "Frontiers in Microbiology".

At the Department of Biophysical Chemistry at the University of Vienna, Tetyana Milojevic and her team have been operating a miniaturized "Mars farm" in order to simulate ancient and probably extinct microbial life – based on gases and synthetically produced Martian regolith of diverse composition. The team investigates interactions between Metallosphaera sedula, a microbe that inhabits extreme environments, and different minerals which contain nutrients in form of metals. Metallosphaera sedula is a chemolithotroph, means being capable of metabolizing inorganic substances like iron, sulphur and uranium as well.
   
To satisfy microbial nutritional fitness, the research team uses mineral mixtures that mimic the Martian regolith composition from different locations and historical periods of Mars: "JSC 1A" is mainly composed of palagonite – a rock that was created by lava; "P-MRS" is rich in hydrated phyllosilicates; the sulfate containing "S-MRS", emerging from acidic times on Mars and the highly porous "MRS07/52" that consists of silicate and iron compounds and simulates sediments of the Martian surface.

"We were able to show that due to its metal oxidizing metabolic activity, when given an access to these Martian regolith simulants, M. sedula actively colonizes them, releases soluble metal ions into the leachate solution and alters their mineral surface leaving behind specific signatures of life, a 'fingerprint', so to say", explains Milojevic. The observed metabolic activity of M. sedula coupled to the release of free soluble metals can certainly pave the way to extraterrestrial biomining, a technique which extracts metals from ores, launching the biologically assisted exploitation of raw materials from asteroids, meteors and other celestial bodies.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D - Scienmag: Latest Science and Health News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D - Scienmag: Latest Science and Health News | Amazing Science | Scoop.it

Catalysts are at the heart of fuel cells-devices that convert hydrogen and oxygen to water and enough electricity to power vehicles for hundreds of miles. But finding effective, inexpensive catalysts has been a key challenge to getting more of these hydrogen-powered, emission-free vehicles out on the road.

To help tackle this challenge, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory used a high-resolution electron microscope to study nanoscale details of catalytic particles made of nickel and cobalt-inexpensive alternatives to the costly platinum used in most fuel cells today.

 

A paper describing the research in the journal Nature Communications includes 3D, dynamic images that reveal how the particles' external and internal structure and chemical makeup change as they become catalytically active. Understanding these nanoscale structural and chemical features will help scientists learn what characteristics make the inexpensive particles most effective-and devise ways to optimize their performance.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Spotting the spin of the Majorana fermion under the microscope

Spotting the spin of the Majorana fermion under the microscope | Amazing Science | Scoop.it
Using a new twist on a technique for imaging atomic structures, researchers have detected a unique quantum property of the Majorana fermion, an elusive particle with the potential for use in quantum information systems.

 

Researchers at Princeton University have detected a unique quantum property of an elusive particle notable for behaving simultaneously like matter and antimatter. The particle, known as the Majorana fermion, is prized by researchers for its potential to open the doors to new quantum computing possibilities.

 

In this study published this week in the journal Science, the research team described how they enhanced an existing imaging technique, called scanning tunneling microscopy, to capture signals from the Majorana particle at both ends of an atomically thin iron wire stretched on the surface of a crystal of lead. Their method involved detecting a distinctive quantum property known as spin, which has been proposed for transmitting quantum information in circuits that contain the Majorana particle.

 

"The spin property of Majoranas distinguishes them from other types of quasi-particles that emerge in materials," said Ali Yazdani, Princeton's Class of 1909 Professor of Physics. "The experimental detection of this property provides a unique signature of this exotic particle."

 

The finding builds on the team's 2014 discovery, also published in Science, of the Majorana fermion in a single atom-wide chain of iron atoms atop a lead substrate. In that study, the scanning tunneling microscope was used to visualize Majoranas for the first time, but provided no other measurements of their properties.

"Our aim has been to probe some of the specific quantum properties of Majoranas. Such experiments provide not only further confirmation of their existence in our chains, but open up possible ways of using them." Yazdani said.

 

First theorized in the late 1930s by the Italian physicist Ettore Majorana, the particle is fascinating because it acts as its own antiparticle. In the last few years, scientists have realized that they can engineer one-dimensional wires, such as the chains of atoms on the superconducting surface in the current study, to make Majorana fermions emerge in solids. In these wires, Majoranas occur as pairs at either end of the chains, provided the chains are long enough for the Majoranas to stay far enough apart that they do not annihilate each other. In a quantum computing system, information could be simultaneously stored at both ends of the wire, providing a robustness against outside disruptions to the inherently fragile quantum states.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Navigational View of the Brain Thanks to Powerful X-Rays

Navigational View of the Brain Thanks to Powerful X-Rays | Amazing Science | Scoop.it
How the brain computes can arguably be best studied on the "meso" scale, and new imaging makes brain tissue visible on that level.

 

If brain imaging could be compared to Google Earth, neuroscientists would already have a pretty good “satellite view” of the brain, and a great “street view” of neuron details. But navigating how the brain computes is arguably where the action is, and neuroscience’s “navigational map view” has been a bit meager.

 

Now, a research team led by Eva Dyer, a computational neuroscientist and electrical engineer, has imaged brains at that map-like or “meso” scale using the most powerful X-ray beams in the country. The imaging scale gives an overview of the intercellular landscape of the brain at a level relevant to small neural networks, which are at the core of the brain’s ability to compute.

 

Dyer, who recently joined the Georgia Institute of Technology and Emory University, also studies how the brain computes via its signaling networks, and this imaging technique could someday open new windows onto how they work.

 

A powerful X-ray tomography scanner allowed the researchers to image particularly thick sections of the brains of mice, which afforded them views into intact neural areas much larger than are customary in microscope imaging. The scanner operated on the same basic principle as a hospital CT scanner, but this scan used high-energy X-ray photons generated in a synchrotron, a facility the size of dozens of football fields.

 

"Argonne National Laboratory (ANL) generates the highest-energy X-ray beams in the country at its synchrotron," said Dyer, who co-led the study with ANL's Bobby Kasthuri at the Advanced Photon Source synchrotron. "They've studied all kinds of materials with really powerful X-rays. Then they got interested in studying the brain."

 

The technique also revealed capillary grids interlacing brain tissues. They dominated the images, with cell bodies of brain cells evenly speckling capillaries like pebbles in a steel wool sponge.

"Our brain cells are embedded in this sea of vasculature," said Dyer, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

 

The study on the new images appeared in the journal eNeuro on Tuesday, October 17, 2017. The team included researchers from Johns Hopkins University, the University of Chicago, Northwestern University, the Argonne National Laboratory, and the University of Pennsylvania. The work was funded by the U.S. Department of Energy, the National Institutes of Health, the Intelligence Advanced Research Projects Activity, and the Defense Advanced Research Projects Agency.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Scientists Can Now Repaint Butterfly Wings

Scientists Can Now Repaint Butterfly Wings | Amazing Science | Scoop.it
Thanks to CRISPR, scientists are studying animal evolution in ways that were previously thought to be impossible.

 

When the butterfly emerged from its pupa, Robert Reed was stunned. It was a Gulf fritillary—a bright-orange species with a few tigerlike stripes. But this butterfly had no trace of orange anywhere. It was entirely black and silver. “It was the most heavy-metal butterfly I’ve ever seen,” Reed says. “It was amazing to see that thing crawl out of the pupa.”

 

Reed’s team at Cornell University had created the metal butterfly by deleting just one of its genes, using the revolutionary gene-editing technique known as CRISPR. And by performing the same feat across several butterfly species, the team showed that this one gene, known as optix, controls all kinds of butterfly patterns. Red becomes black. Matte becomes shiny. Another gene, known asWntA, produces even wilder variations when it’s deleted. Eyespots disappear. Boundaries shift. Stripes blur.

 

These experiments prove what earlier studies had suggested—that optix andWntA are “paintbrush genes,” says Anyi Mazo-Vargas, one of Reed’s students. “Wherever you put them, you’ll have a pattern.”

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Major advance in nanopore detection of peptides and proteins

Major advance in nanopore detection of peptides and proteins | Amazing Science | Scoop.it

Nanopore technology, which is used to sequence DNA, is cheap, hand-held and works in the jungle and in space. The use of this technology to identify peptides or proteins is now a step closer. University of Groningen scientists have used a patented nanopore to identify the fingerprints of proteins and peptides, and it can even detect polypeptides differing by one amino acid. The results were published on 16 October in the journal Nature Communications.

 

Scientists have now been able to identify a number of peptides and proteins passing through a funnel-shaped nanopore. They have solved two main problems that have hampered attempts to analyze and sequence proteins with nanopores: getting polypeptides into the pore and identifying differences in proteins by recordings of current. 'Nanopores usually carry a charge, and the amino acids that make up polypeptides are also charged. Getting the polypeptide inside the pore and to pass through nanopores is therefore a challenge', explains associate professor of Chemical Biology Giovanni Maglia.

 

Maglia and his team used an electro-osmotic flow to pull the polypeptides into the pores. Under an applied potential across the nanopore, a flow of ions and water passes through the pore.' If the direction of the ion current can be controlled, a fluid flow strong enough to transport polypeptides can be generated. 'We did this by tuning the charges inside the pore wall. By changing the pH of the medium, it was possible to fine-tune the balance between the electro-osmotic flow and the force of the electric field which was applied across the pore.'

 

Maglia tested five different polypeptides ranging from 1 to 25 kilodalton. 'We used biomarker peptides linked to disease, with different charges and shapes', he says. The polypeptides entered the pore and the current across the pore produced a 'fingerprint' for each. He thus managed to distinguish two versions of the 21 amino acid peptide endothelin, which differ by just one amino acid (tryptophan or methionine).

 

Getting a good reading from a nanopore is complicated. Maglia used a new kind of pore that he characterized and patented. 'Pores used in the past are barrel-shaped, which means the shape and size of the pore has fundamental limitations. But our pore has an alpha helical funnel shape, and the size of the narrow end, which is where we do our measurements, means it should contain just one amino acid, so it is more easily tuned.'

 

Currently, the polypeptides pass through the pore too rapidly to identify the separate amino acids. This is needed for protein sequencing at the single-molecule scale. It would be a valuable tool for research, explains Maglia: 'Proteins can be chemically modified in many unique ways, and we have very little information on the exact composition of proteins in our body.' This can only be seen at the single-molecule level.

 

Reference: Gang Huang, Kherim Willems, Misha Soskine, Carsten Wloka & Giovanni Maglia: Electro-Osmotic Capture and Ionic Discrimination of Peptide and Protein Biomarkers with FraC Nanopores. Nature Communications, 16 October 2016

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Whales and dolphins have rich 'human-like' cultures and societies

Whales and dolphins have rich 'human-like' cultures and societies | Amazing Science | Scoop.it
Whales and dolphins (Cetaceans) live in tightly-knit social groups, have complex relationships, talk to each other and even have regional dialects - much like human societies.

 

A major new study, published today in Nature Ecology & Evolution, has linked the complexity of Cetacean culture and behaviour to the size of their brains. The research was a collaboration between scientists at The University of Manchester, The University of British Columbia, Canada, The London School of Economics and Political Science (LSE) and Stanford University, United States.

 

The study is first of its kind to create a large dataset of cetacean brain size and social behaviors. The team compiled information on 90 different species of dolphins, whales, and porpoises. It found overwhelming evidence that Cetaceans have sophisticated social and cooperative behavior traits, similar to many found in human culture.

 

The study demonstrates that these societal and cultural characteristics are linked with brain size and brain expansion—also known as encephalisation. The long list of behavioral similarities includes many traits shared with humans and other primates such as:

  • complex alliance relationships - working together for mutual benefit
  • social transfer of hunting techniques - teaching how to hunt and using tools
  • cooperative hunting
  • complex vocalizations, including regional group dialects - 'talking' to each other
  • vocal mimicry and 'signature whistles' unique to individuals - using 'name' recognition
  • interspecific cooperation with humans and other species - working with different species
  • alloparenting - looking after youngsters that aren't their own
  • social play

 

Dr Susanne Shultz, an evolutionary biologist in Manchester's School of Earth and Environmental Sciences, said: "As humans, our ability to socially interact and cultivate relationships has allowed us to colonize almost every ecosystem and environment on the planet. We know whales and dolphins also have exceptionally large and anatomically sophisticated brains and, therefore, have created a similar marine based culture. "That means the apparent co-evolution of brains, social structure, and behavioral richness of marine mammals provides a unique and striking parallel to the large brains and hyper-sociality of humans and other primates on land. Unfortunately, they won't ever mimic our great metropolises and technologies because they didn't evolve opposable thumbs."

 

The team used the dataset to test the social brain hypothesis (SBH) and cultural brain hypothesis (CBH). The SBH and CBH are evolutionary theories originally developed to explain large brains in primates and land mammals. They argue that large brains are an evolutionary response to complex and information-rich social environments. However, this is the first time these hypotheses have been applied to 'intelligent' marine mammals on such a large scale.

 

Dr Michael Muthukrishna, Assistant Professor of Economic Psychology at LSE, added: "This research isn't just about looking at the intelligence of whales and dolphins, it also has important anthropological ramifications as well. In order to move toward a more general theory of human behavior, we need to understand what makes humans so different from other animals. And to do this, we need a control group. Compared to primates, cetaceans are a more "alien" control group."

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Filling the early universe with knots can explain why the world is three-dimensional

Filling the early universe with knots can explain why the world is three-dimensional | Amazing Science | Scoop.it
The next time you come across a knotted jumble of rope or wire or yarn, ponder this: The natural tendency for things to tangle may help explain the three-dimensional nature of the universe and how it formed.

 

An international team of physicists has developed an out-of-the-box theory that shortly after it popped into existence 13.8 billion years ago the universe was filled with knots formed from flexible strands of energy called flux tubes that link elementary particles together. The idea provides a neat explanation for why we inhabit a three-dimensional world and is described in a paper titled "Knotty inflation and the dimensionality of space time" accepted for publication in the European Physical Journal C and available on the arXiv preprint server.

 

"Although the question of why our universe has exactly three large spatial dimensions is one of the most profound puzzles in cosmology … it is actually only occasionally addressed in the scientific literature," the article begins. For a new solution to this puzzle, the five co-authors – physics professors Arjun Berera at the University of Edinburgh, Roman Buniy at Chapman University, Heinrich Päs (author of "The Perfect Wave: With Neutrinos at the Boundary of Space and Time") at the University of Dortmund, João Rosa at the University of Aveiro and Thomas Kephart at Vanderbilt University – took a common element from the standard model of particle physics and mixed it with a little basic knot theory to produce a novel scenario that not only can explain the predominance of three dimensions but also provides a natural power source for the inflationary growth spurt that most cosmologists believe the universe went through microseconds after it burst into existence.

 

The common element that the physicists borrowed is the "flux tube" comprised of quarks, the elementary particles that make up protons and neutrons, held together by another type of elementary particle called a gluon that "glues" quarks together. Gluons link positive quarks to matching negative antiquarks with flexible strands of energy called flux tubes. As the linked particles are pulled apart, the flux tube gets longer until it reaches a point where it breaks. When it does, it releases enough energy to form a second quark-antiquark pair that splits up and binds with the original particles, producing two pairs of bound particles.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

A self-propelled catheter with earthworm-like peristaltic motion

A self-propelled catheter with earthworm-like peristaltic motion | Amazing Science | Scoop.it
A research team has developed a mechanism of a self-propelled catheter capable of generating peristaltic motion just like an earthworm by applying pneumatic pressure inside only one tube. The goal is to develop an AutoGuide robot that propels itself inside bronchi, automatically reaching the target lesion within the lungs, and can take a lesion sample and provide treatment.

 

Biopsies of pulmonary lesions are essential for increasing the accuracy of diagnosis and treatment for respiratory illnesses such as lung cancer. Currently, manual biopsies are performed via bronchoscopy. However, the bronchi tends to branch thinner and more complicatedly as it goes to the periphery, which makes it a challenge to reliably choose one and fine-tune the propelling movement. Given the skill disparities in operating doctors as well, it is difficult to reliably reach the lesion with the biopsy forceps, resulting in inadequate diagnosis accuracy.

 

The development of instruments and mechanisms that can reliably reach the target in the lungs is required for adequately testing with an endoscope, but the looming challenge was finding a mechanism to reliably advance the biopsy forceps to the target even inside the ultrafine and widely branching bronchi.

 

Now, Prof. Yuichiro Takai of Department of Respiratory Medicine, Omori Medical Center at Toho University and Prof. Hideyuki Tsukagoshi, of Department of System and Control Engineering at Tokyo Tech collaborate in developing the new self-propelled catheter designed to generate traveling waves in multiple chambers just by adding and reducing pressure inside one tube. This allowed for moving forward with peristaltic motion within an ultrafine structure such as a bronchus. This catheter also has an actively curving function for choosing the direction of propulsion, and a flexing drive function for adjusting to changes in line diameter. Their effectiveness was verified using a bronchus model.

 

The goal is to increase the accuracy of branches which can be propelled, include a camera to collect information on the inside of the bronchi, develop functions applicable to biopsies and treatment, and put instruments to practical use.

more...
No comment yet.