Amazing Science
Follow
351.3K views | +125 today
 
Scooped by Dr. Stefan Gruenwald
onto Amazing Science
Scoop.it!

Super-massive black hole with a mass half the size of its hosting galaxy

Super-massive black hole with a mass half the size of its hosting galaxy | Amazing Science | Scoop.it

A new survey recently reported in Nature found a supermassive black hole (mass~17 billions of solar masses) at the center of a relatively "light" galaxy. This wouldn't be a surprise if the mass of the black hole wasn't more than half the mass of the buldge of the hosting galaxy. The black line shows the mass–luminosity relation for galaxies with a directly measured black-hole mass.

 

NGC 1277 is a significant positive outlier. Indeed, we already know that most galaxies -- including our own Milky Way -- host supermassive black holes which lurk at the galactic center. Also, the mass of the black hole is believed to be tightly connected with the properties of the hosting galaxy. Several models of galaxy dynamics and mergers predict a black hole mass VS bulge luminosity relation similar to that shown in the Figure above and this has important implications in the understanding of the galaxy evolution and of black hole population models. Typically, the mass of the black hole is about 0.1 per cent of the mass of the stellar bulge of the galaxy and the maximum mass fraction observed so far was about 10%.

 

The discovery of NGC 1277, a compact, lenticular galaxy with a mass of roughly 1.2x10^11 solar masses, is particularly interesting because this galaxy hosts a black hole of mass about 1.7x10^10 solar masses, that is, roughly 59% of the total bulge mass. Indeed, it's evident in the Figure above how NGC 1277 deviates from the expected empirical behavior.

 

This discovery seems confirmed by other observations of galaxies that host oversized black holes and it might suggest a failure (or the need of some improvement) in current models.

more...
No comment yet.
Your new post is loading...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

20,000+ FREE Online Science and Technology Lectures from Top Universities

20,000+ FREE Online Science and Technology Lectures from Top Universities | Amazing Science | Scoop.it

NOTE: To subscribe to the RSS feed of Amazing Science, copy http://www.scoop.it/t/amazing-science/rss.xml into the URL field of your browser and click "subscribe".

 

This newsletter is aggregated from over 1450 news sources:

http://www.genautica.com/links/1450_news_sources.html

 

All my Tweets and Scoop.It! posts sorted and searchable:

http://www.genautica.com/tweets/index.html

 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

You can search through all the articles semantically on my

archived twitter feed

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

NOTE: All articles in the amazing-science newsletter can also be sorted by topic. To do so, click the FIND buntton (symbolized by the FUNNEL on the top right of the screen)  and display all the relevant postings SORTED by TOPICS.

 

You can also type your own query:

 

e.g., you are looking for articles involving "dna" as a keyword

 

http://www.scoop.it/t/amazing-science/?q=dna


Or CLICK on the little

FUNNEL symbol at the

 top right of the screen

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


MOST_READ • 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video 

more...
Margarida Sá Costa's curator insight, January 31, 6:55 AM

Lectures are in Playlists and are alphabetically sorted with thumbnail pictures. No fee, no registration required - learn at your own pace. Certificates can be arranged with presenting universities.

Casper Pieters's curator insight, March 9, 4:21 PM

Great resources for online learning just about everything.  All you need is will power and self- discipline.

Siegfried Holle's curator insight, July 4, 5:45 AM

Your knowledge is your strength and power 

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Evolutionary arms race between retrotransposons and regulatory networks

Evolutionary arms race between retrotransposons and regulatory networks | Amazing Science | Scoop.it
Retrotransposons are thought to be remnants of ancient viruses that infected early animals and inserted their genes into the genome long before humans evolved. Now they can only replicate themselves within the genome. Depending on where a new copy gets inserted into the genome, a jumping event can disrupt normal genes and cause disease. Often the effect is neutral, simply adding to the overall size of the genome. Very rarely the effect might be advantageous, because the added DNA can itself be a source of new regulatory elements that enhance gene expression. But the high probability of deleterious effects means natural selection favors the evolution of mechanisms to prevent jumping events.

Scientists estimate that jumping genes or "transposable elements" account for at least 50 percent of the human genome, and retrotransposons are by far the most common type.

"There have been successive waves of retrotransposon activity in primate evolution, when a transposable element changed to become expressed and replicated itself throughout the genome until something turned it off," Salama said. "We've discovered a major mechanism by which the genome is able to shut down these mobile DNA elements."

The repressors identified in the new study belong to a large family of proteins known as "KRAB zinc finger proteins." These are DNA-binding proteins that repress gene activity, and they constitute the largest family of gene-regulating proteins in mammals. The human genome has over 400 genes for KRAB zinc finger proteins, and about 170 of them have emerged since primates diverged from other mammals.


Their findings, published September 28 in Nature, show that over evolutionary time, primate genomes have undergone repeated episodes in which mutations in jumping genes allowed them to escape repression, which drove the evolution of new repressor genes, and so on. Furthermore, their findings suggest that repressor genes that originally evolved to shut down jumping genes have since come to play other regulatory roles in the genome.


"We have basically the same 20,000 protein-coding genes as a frog, yet our genome is much more complicated, with more layers of gene regulation. This study helps explain how that came about," said Sofie Salama, a research associate at the UC Santa Cruz Genomics Institute who led the study.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

First complete sequence of C. autoethanogenum, a bacteria important to fuel and chemical production

First complete sequence of C. autoethanogenum, a bacteria important to fuel and chemical production | Amazing Science | Scoop.it
Researchers at the Department of Energy’s Oak Ridge National Laboratory are the first team to sequence the entire genome of the Clostridium autoethanogenum bacterium, which is used to sustainably produce fuel and chemicals from a range of raw materials, including gases derived from biomass and industrial wastes.

The ORNL work was funded by LanzaTech, a biotechnology company based in Illinois with an innovative carbon recycling process. LanzaTech’s gas fermentation platform uses proprietary microbes for efficiently converting carbon-rich waste gases and residues into useful fuels and chemicals.

Successfully sequencing Clostridium autoethanogenum—classified as a complex, class III microbe because of its many repeating units of DNA bases—has been of significant interest to the biotechnology industry. A Biotechnology for Biofuels paper co-authored by ORNL’s Steve Brown and Miriam Land, University of Tennessee doctoral student Sagar Utturkar and collaborating LanzaTech researchers generated a top-5-percent rating from Altmetric, an online rating system that measures the volume and value of recognition an article receives from research communities and media outlets.

“With the complete genomic sequence, we will have a better understanding of the microbe’s metabolism and mutations that will enable LanzaTech to make modifications to the wild-type, or naturally occurring, strain for optimizing the conversion of waste into fuel,” Brown said. “Our ORNL lab has a lot of experience sequencing genomes, and we have the analytic capability to tackle this project.”

The research team sequenced the more than 4.3 million base pairs of DNA that make up the organism’s genome using RS-II long-read sequencing technology developed by Pacific Biosciences (PacBio).
more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Physicists design record-breaking laser that accelerates the interaction between light and matter by ten times

Physicists design record-breaking laser that accelerates the interaction between light and matter by ten times | Amazing Science | Scoop.it

Reporting in the journal Nature Physics, physicists from Imperial College London and the Friedrich-Schiller-Universität Jena, in Germany, used semiconductor nanowires made of zinc oxide and placed them on a silver surface to create ultra-fast lasers. 


By using silver rather than a conventional glass surface, the scientists were able to shrink their nanowire lasers down to just 120 nanometres in diameter - around a thousandth the diameter of human hair.


The physicists were able to shrink the laser by using surface plasmons, which are wave-like motions of excited electrons found at the surface of metals. When light binds to these oscillations it can be focused much more tightly than usual. 


By using surface plasmons they were able to squeeze the light into a much smaller space inside the laser, which allowed the light to interact much more strongly with the zinc oxide. 


This stronger interaction accelerated the rate at which the laser could be turned on and off to ten times that of a nanowire laser using a glass surface. These are the fastest lasers recorded to date, in terms of the speed at which they can turn on and off.


Senior author Dr Rupert Oulton from the Department of Physics at Imperial College London said: “This work is so exciting because we are engineering the interaction of light and matter to drive light generation in materials much faster than it occurs naturally. When we first started working on this, I would have been happy to speed up switching speeds to a picosecond, which is one trillionth of a second. But we’ve managed to go even faster, to the point where the properties of the material itself set a speed limit.” 


PhD student Robert Röder, from Friedrich-Schiller Universität Jenasaid: “This is not only ‘world record’ regarding the switching speed. Most likely we also achieved the maximum possible speed at which such a semiconductor laser can be operated.” 

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Flooding Risk From Climate Change, Country by Country

Flooding Risk From Climate Change, Country by Country | Amazing Science | Scoop.it
More than a quarter of Vietnam’s residents live in areas likely to be subject to regular floods by the end of the century. Four percent of China’s residents — 50 million people — live in the same kind of areas. Across the globe, about one person in 40 lives in a place likely to be exposed to such flooding by the end of the century, absent significant changes.

These figures are the result of a new analysis of sea levels and flood risk around the world, conducted by Climate Central and based on more detailed sea-level data than has previously been available. The analysis offers country-by-country estimates for populations at risk of regular flooding, accounting for a range of potential emissions reductions and for variations of sea level sensitivity to climate change.

Globally, eight of the 10 large countries most at risk are in Asia. The Netherlands would be the most exposed, with more than 40 percent of its country at risk, but it also has the world’s most advanced levee system, which means in practice its risk is much lower.

Some countries in Asia may choose to emulate the Dutch system in coming decades, but some of the Asian nations are not wealthy and would struggle to do so.

The analysis offers more evidence that the countries emitting the most carbon aren’t necessarily the ones that will bear the brunt of climate change. The United States — one of the world’s largest carbon emitters per capita and historically the overall largest emitter — ranks 34th on the list of risk of flood exposure, between India and Madagascar. The share of Americans projected to be exposed to regular flooding — about 1 percent — might seem small, but it’s still about 3.1 million people, more than live in Chicago and Minneapolis combined.

China, on the other hand, leads the world in both current emissions and greatest number of people exposed to flood risk.

Climate Central, a news organization and research group, has released the new analysis as the United Nations gathers this week for a summit on climate change. Climate scientists expect flooding to increase as global warming melts snow and ice and expands the volume of oceans. The analysis defines regular flooding as a flood at least once every three years.

Of course, there is substantial uncertainty about the future of carbon emissions, global warming and sea levels. The map above includes estimates, given current trends, for the most likely possibility but also the extreme low and high estimates for sea levels and flood risk. Climate change could occur at a different pace than expected, and governments will surely vary in the aggressiveness of their policy responses.
more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

All Ashkenazi Jews alive today can trace their roots to a group of just 350 people who lived 600 to 800 years ago

All Ashkenazi Jews alive today can trace their roots to a group of just 350 people who lived 600 to 800 years ago | Amazing Science | Scoop.it

Ashkenazi Jews (AJ), identified as Jewish individuals of Central- and Eastern European ancestry, form the largest genetic isolate in the United States. AJ demonstrate distinctive genetic characteristics12, including high prevalence of autosomal recessive diseases and relatively high frequency of alleles that confer a strong risk of common diseases, such as Parkinson’s disease3and breast and ovarian cancer4. Several recent studies have employed common polymorphisms5,-13 to characterize AJ as a genetically distinct population, close to other Jewish populations as well as to present-day Middle Eastern and European populations. Previous analyses of recent AJ history highlighted a narrow population bottleneck of only hundreds of individuals in late medieval times, followed by rapid expansion1214.


The AJ population is much larger and/or experienced a more severe bottleneck than other founder populations, such as Amish, Hutterites or Icelanders15, whose demographic histories facilitated a steady stream of genetic discoveries. This suggests the potential for cataloguing nearly all founder variants in a large extant population by sequencing a limited number of samples, who represent the diversity in the founding group (for example, ref. 16). Such a catalogue of variants can make a threefold contribution: First, it will enable clinical interpretation of personal genomes in the sizeable AJ population by distinguishing between background variation and recent, potentially more deleterious mutations. Second, it will improve disease mapping in AJ by increasing the accuracy of imputation. Third, the ability to extensively sample a population with ancient roots in the Levant is expected to provide insights regarding the histories of both Middle Eastern and European populations.


Now a team of scientists report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Reconstruction of recent AJ history from such data confirms a recent bottleneck of merely ≈350 individuals. Modeling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. The researchers date the split between the two ancestral populations to ≈12–25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum.

more...
Ellen Diane's curator insight, September 27, 10:37 AM

very interesting- thanks;)

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Did the universe originate from a hyper-dimensional black hole?

Did the universe originate from a hyper-dimensional black hole? | Amazing Science | Scoop.it

Lately there's been news of a radical new theory proposing that the universe began from a hyper-dimensional black hole. Most of the reports seem to stem from an article posted a while back on the Nature blog, which references the original paper. So let's have a little reality check.


No one is abandoning the big bang model. The original paper hasn't even been peer reviewed yet and the paper doesn't present a radical new theory to overturn the big bang. What the paper is actually about is higher-dimensional gravitational theory.


The standard theory of gravity (general relativity) describes our universe as a geometry of three-dimensional space with one dimension of time. This is sometimes called 3 + 1 space, and it gives a very accurate description of the universe we observe. But theorists like to play around with alternative models to see how they differ from regular general relativity. They may look at 2 + 1 space, a kind of flatland with time, or 2 + 2, with two time dimensions. There isn't necessarily anything "real" about these models, and there certainly isn't any experimental evidence to support anything other than 3 + 1 gravity, but alternative models are useful because they help us gain a deeper understanding of general relativity. In this particular paper, the authors were exploring 4 + 1 gravity. That is, a five-dimensional universe with 4 spatial dimensions and 1 time.


Back in 2000, another team of authors proposed a model where our regular 3 + 1 gravity could be treated as a brane within a larger 4 + 1 universe. It is similar to the way a 2 + 1 universe could be imagined as a 2-dimensional surface (the brane) within our 3-dimensional space. In the 2000 paper, the authors showed that a particular 4 + 1 universe with a 3 + 1 brane could give rise to the type of gravity we actually see.


The new paper takes this model one step further. In it, the authors show that 4 + 1 gravity allows for the existence of black holes. So if a 4 + 1 universe had large stars, some of those stars could collapse into a 4-dimensional "hyper black hole". Like black holes in regular general relativity, these hyper black holes would have a central "singularity" of extremely dense and hot matter/energy. The authors then went on to show that a hyper black hole with the right conditions could not only create a three-dimensional brane, but the new brane would look very similar to the early universe we actually observe.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Earth's water is older than the sun: Likely originated as ices that formed in interstellar space

Earth's water is older than the sun: Likely originated as ices that formed in interstellar space | Amazing Science | Scoop.it
Water was crucial to the rise of life on Earth and is also important to evaluating the possibility of life on other planets. Identifying the original source of Earth's water is key to understanding how life-fostering environments come into being and how likely they are to be found elsewhere. New work found that much of our solar system's water likely originated as ices that formed in interstellar space.

Water is found throughout our Solar System. Not just on Earth, but on icy comets and moons, and in the shadowed basins of Mercury. Water has been found included in mineral samples from meteorites, the Moon, and Mars.


Comets and asteroids in particular, being primitive objects, provide a natural "time capsule" of the conditions during the early days of our Solar System. Their ices can tell scientists about the ice that encircled the Sun after its birth, the origin of which was an unanswered question until now.


In its youth, the Sun was surrounded by a protoplanetary disk, the so-called solar nebula, from which the planets were born. But it was unclear to researchers whether the ice in this disk originated from the Sun's own parental interstellar molecular cloud, from which it was created, or whether this interstellar water had been destroyed and was re-formed by the chemical reactions taking place in the solar nebula.


"Why this is important? If water in the early Solar System was primarily inherited as ice from interstellar space, then it is likely that similar ices, along with the prebiotic organic matter that they contain, are abundant in most or all protoplanetary disks around forming stars," Alexander explained.


"But if the early Solar System's water was largely the result of local chemical processing during the Sun's birth, then it is possible that the abundance of water varies considerably in forming planetary systems, which would obviously have implications for the potential for the emergence of life elsewhere."

more...
Greenconflict Solutions's curator insight, September 26, 9:59 AM

This is really interesting!!

Scooped by Dr. Stefan Gruenwald
Scoop.it!

MicroRNA mimicry blocks pulmonary fibrosis

MicroRNA mimicry blocks pulmonary fibrosis | Amazing Science | Scoop.it
Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular disease. While many studies have shown therapeutic efficacy using miRNA inhibitors, efforts to restore or increase the function of a miRNA have been lagging behind.


The miR‐29 family has gained a lot of attention for its clear function in tissue fibrosis. This fibroblast‐enriched miRNA family is downregulated in fibrotic diseases which induces a coordinate increase of many extracellular matrix genes. Here, we show that intravenous injection of synthetic RNA duplexes can increase miR‐29 levels in vivo for several days. Moreover, therapeutic delivery of these miR‐29 mimics during bleomycin‐induced pulmonary fibrosis restores endogenous miR‐29 function whereby decreasing collagen expression and blocking and reversing pulmonary fibrosis. Our data support the feasibility of using miRNA mimics to therapeutically increase miRNAs and indicate miR‐29 to be a potent therapeutic miRNA for treating pulmonary fibrosis.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Absence of a thyroid hormone during development leads surprisingly to congenital deafness in mouse

Absence of a thyroid hormone during development leads surprisingly to congenital deafness in mouse | Amazing Science | Scoop.it
Fatigue, weight gain, chills, hair loss, anxiety, excessive perspiration -- these symptoms are a few of the signs that the thyroid gland has gone haywire. Harnessing electron microscopy to track the inner hair cells of the cochlea in two groups of mice, new research points to an additional complication caused by an imbalance in the thyroid gland: congenital deafness.


The study, published in Mammalian Genome, was conducted by Prof. Karen B. Avraham and Dr. Amiel Dror of the Department of Human Molecular Genetics and Biochemistry at TAU's Sackler School of Medicine. Using state-of-the-art imaging, the researchers found that congenital deafness can be caused by an absence of a thyroid hormone during development.


"Since our laboratory mainly focuses on the system of the inner ear, the study of a system such as the thyroid gland was new to us and therefore challenging," said Dr. Dror. "My curiosity as to how these two systems interact together to develop normal hearing led to this multidisciplinary study."


The researchers used mouse populations to study a form of congenital deafness that affects humans. Harnessing electron microscopy at the Sackler Cellular & Molecular Imaging Center, researchers tracked the inner hair cells of the cochlea (the auditory portion of the inner ear) in two groups -- control (wild) mice and mutant (congenitally deaf) mice. Inner-ear hair bundles in the affected mice were labelled with bright colors to highlight the disorganization of the ear's hair cells.


Examination of the inner ear showed a spectrum of structural and molecular defects consistent with hypothyroidism or disrupted thyroid hormone action. The researchers' analysis of the images revealed defective formation of the mice's thyroid glands: labelled thyroid follicles did not grow or grew incompletely.


"Our work demonstrated that normal hearing fails to develop when thyroid hormone availability is insufficient as a result of a genetic mutation," said Dr. Dror. "Our model provides a platform to test therapeutic approaches in order to prevent hearing loss before it occurs. There is still long way ahead before we get to the point of practical treatments with our research, but we believe we are moving in the right direction."

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Fossil evidence of limb regeneration in 300 million year old amphibian

Fossil evidence of limb regeneration in 300 million year old amphibian | Amazing Science | Scoop.it

A trio of researchers with Germany's Museum für Naturkunde, Leibniz-Institut für Evolutions und Biodiversitätsforschung, has found evidence of limb regeneration in a 300 million year old amphibian fossil, which suggests that the ability to regenerate entire limbs by such creatures is not restricted to modern salamanders. In their paper published in Proceedings of the Royal Society B: Biological Sciences, Nadia Fröbisch, Constanze Bickelmann and Florian Witzmann describe the fossil they've been studying and why they believe it was able to regenerate its limbs.


Scientists believe that salamanders are the only modern four-legged animals that can regenerate entire limbs throughout their lives. What's not clear, however, despite a great deal of research, is if the ability is a recent evolutionary trait or if it came about long ago and has been passed along for many years. The findings by the researchers with this latest effort suggest the latter—the fossil appears to be an ancient relative of the salamander.


The researchers note that when modern salamanders lose a limb, the replacement that grows back doesn't always look just like the original—sometimes there are odd bumps or scars or digits fused back together. This is particularly so if a salamander looses the same limb more than once. In examining the amphibian fossil, (Micromelerpeton, found in northwest Germany) the researchers found the same odd characteristic in the toes—there was an extra partly fused one, suggesting very strongly that the creature had lost a toe and had re-grown a replacement.


Finding regenerative ability in such an ancient creature begs the question of why more tetrapod species don't have the ability today. The researchers suggest that the ability to re-grow lost limbs was perhaps lost over time or evolved into something else entirely as it became a trait that was no longer needed, or because it took up too much resources.


Gaining an evolutionary perspective on limb regeneration might help researchers in other areas that are attempting to find out if limb replacement can be caused to come about in other animals, particularly humans, through some unknown mechanism. Learning how salamanders developed the ability might help modern researchers repeat the process.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Earth’s Impending Magnetic Pole Reversal May Happen Sooner Than Expected

Earth’s Impending Magnetic Pole Reversal May Happen Sooner Than Expected | Amazing Science | Scoop.it

Earth's magnetic north and south poles have flip-flopped many times in our planet's history—most recently, around 780,000 years ago. Geophysicists who study the magnetic field have long thoughtthat the poles may be getting ready to switch again, and based on new data, it might happen earlier than anyone anticipated.


The European Space Agency's satellite array dubbed “Swarm” revealed that Earth's magnetic field is weakening 10 times faster than previously thought, decreasing in strength about 5 percent a decade rather than 5 percent a century. A weakening magnetic field may indicate an impending reversal, which scientists predict could begin in less than 2,000 years. Magnetic north itself appears to be moving toward Siberia.


Geophysicists do not yet fully understand the process of geomagnetic reversals, but they agree that our planet's field is like adipole magnet. Earth's center consists of an inner core of solid iron and an outer core of liquid iron, a strong electrical conductor. The liquid iron in the outer core is buoyant, and as it heats near the inner core, it rises, cools off and then sinks. Earth's rotation twists this moving iron liquid and generates a self-perpetuating magnetic field with north and south poles.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Ocean Cleanup Project: 20 year old Boyan Slat's ambitious plan to rid the oceans of plastic

Ocean Cleanup Project: 20 year old Boyan Slat's ambitious plan to rid the oceans of plastic | Amazing Science | Scoop.it

Boyan Slat's story is not quite that of a 20-year-old Wunderkind who magically found a potential fix to a longstanding problem. It's perhaps more accurately described as a combination of personal dedication and trial and error. When going through his old prototypes for a technology that would passively scrub oceans of plastic, he's almost embarrassed of his early concepts.


"But that's what science is really," Slat told me. "It's a work in progress."

The crowdfunding campaign behind Slat's Ocean Cleanup Project was announced with strong bidding, no matter: "With two million dollars we can make a theoretical concept come true." With just two days left in his campaign, Slat successfully collected the funding for his project, bringing him one step closer to realizing a vision of plastic-free oceans.


Plastic is the enduring residue of consumer society. A plastic shopping bag corrodes in approximately 20 years; a plastic bottle decays in something like 450 years. Cheap and universally applicable, 225 million tons of it are produced every year, made from a resource that is not quite as interminable as it used to be: oil.


Plastic clouds our oceans as floating particulate, sometimes forming entire islands. It is estimated that there are 150 million tons of plastic in the oceans, with 100,000 tons in the North Pacific garbage patch alone. This means that plastic is responsible for about 70 percent of all oceanic pollution. If those numbers fail to illustrate the sheer scope of the problem, just look at these people posing in the middle of their weekly production of household rubbish.


It was while diving through Greece that Slat, then 17, grasped the gravity of the problem. Ever since, the Dutch teenager, who just turned 20, has put his energy into developing a technique of harnessing the power of gyres to round up plastic.


Today, he leads a team of 100 scientists, students, and supporters. And withhis latest crowdfunding success, Slat's workload shows no sign of slowing down. He explained that he next plans to build upscaled prototypes of his floating, 100-kilometer long collectors, before anchoring the systems in polluted waters within the next three to five years.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Experiment makes Schrödinger's cat choose—things can be real, or certain, but not both

Experiment makes Schrödinger's cat choose—things can be real, or certain, but not both | Amazing Science | Scoop.it

Experimenting within quantum theory is an extremely complex process, where common intuitions are regularly inverted within shifting reality. Over the years several quantum features and methods of their study have been identified. Now scientists have investigated a new set of assumptions and proposed a novel experiment, to test the consequences of making quantum theory more intuitive.


"While quantum theory is the science behind almost all of our technology, its disconnect with our everyday intuitions is still worrisome and actively researched," says lead author Associate Professor Daniel Terno.


"How do you find your way in a reality which is shifting, where the opposites are allowed to coexist? Moreover, how do you conduct experiments in it? These are the questions that must be answered when dealing with the floating world of quantum mechanics."


Throughout the development of quantum theory, a set of reasonable ideas has led to strange paradoxes, such as the famous Schrodinger's cat, which is neither dead nor alive.


Using this wave-particle duality as their starting point, the research team investigated a new and more comprehensible set of assumptions:


  • Every object at any time is really a particle or a wave, but not both (objectivity)
  • If you know enough you can predict everything (determinism)
  • Speed of light is the ultimate limit (locality)

 

In taking these assumptions and applying them to an experiment, where the measuring device is controlled by a Schrodinger's cat-like state, the research team reached some perplexing paradoxes.


"Only after the cat was found to be dead or alive were we able to tell if what we did was to look for a particle or for a wave," says Associate Professor Terno. "Then these three innocent-looking ideas result in predictions that would contradict an experiment. The universe simply does not work like that: you can see things to be real, or certain, but not both."


Then the researchers tweaked their initial assumptions, replacing the third assumption with the requirement that how you set your detectors does not affect the system you study before they interact. This tweak lead to another strange result: it is not only that our quantum world is not like that, but such a combination cannot be realized in any universe.


"We can just repeat after Alice: things get stranger and stranger"

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

'Invisibility cloak' uses lenses to bend light, effectively rendering things invisible to the eye

'Invisibility cloak' uses lenses to bend light, effectively rendering things invisible to the eye | Amazing Science | Scoop.it
A device called the Rochester Cloak uses an array of lenses to bend light, effectively rendering what is on the other side invisible to the eye. And you can try it for yourself.


One of the problems with the cloaking devices developed to date -- and it's a big one -- is that they really only work if both the viewer and whatever is being cloaked remain still. This, of course, is not entirely practical, but a difficult problem to solve.


For the first time, researchers have made a cloaking device that works multi-directionally in three dimensions -- using no specialized equipment, but four standard lenses.


"There've been many high tech approaches to cloaking and the basic idea behind these is to take light and have it pass around something as if it isn't there, often using high-tech or exotic materials," said professor of physics at Rochester University John Howell, who developed the Rochester Cloak with graduate student Joseph Choi.


"This is the first device that we know of that can do three-dimensional, continuously multidirectional cloaking, which works for transmitting rays in the visible spectrum," Choi added.


As well as at least partially solving the viewpoint problem, the Rochester cloak also leaves the background undisturbed, without any warping, as has appeared in other devices. This invisibility has a range of around 15 degrees; as you can see in the video below at around the two-minute mark when Choi places his hand in between the lenses, the dead centre of the field is not included.


more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

IBM opens a new era of computing with brain-like chip: 4096 cores, 1 million neurons, 5.4 billion transistors

IBM opens a new era of computing with brain-like chip: 4096 cores, 1 million neurons, 5.4 billion transistors | Amazing Science | Scoop.it

Scientists at IBM Research have created by far the most advanced neuromorphic (brain-like) computer chip to date. The chip, called TrueNorth, consists of 1 million programmable neurons and 256 million programmable synapses across 4096 individual neurosynaptic cores. Built on Samsung’s 28nm process and with a monstrous transistor count of 5.4 billion, this is one of the largest and most advanced computer chips ever made. Perhaps most importantly, though, TrueNorth is incredibly efficient: The chip consumes just 72 milliwatts at max load, which equates to around 400 billion synaptic operations per second per watt — or about 176,000 times more efficient than a modern CPU running the same brain-like workload, or 769 times more efficient than other state-of-the-art neuromorphic approaches. Yes, IBM is now a big step closer to building a brain on a chip.


The animal brain (which includes the human brain, of course), as you may have heard before, is by far the most efficient computer in the known universe. As you can see in the graph below, the human brain has a “clock speed” (neuron firing speed) measured in tens of hertz, and a total power consumption of around 20 watts. A modern silicon chip, despite having features that are almost on the same tiny scale as biological neurons and synapses, can consume thousands or millions times more energy to perform the same task as a human brain. As we move towards more advanced areas of computing, such as artificial general intelligence and big data analysis — areas that IBM just happens to be deeply involved with — it would really help if we had a silicon chip that was capable of brain-like efficiency.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

How Big The Internet Of Things Could Become

How Big The Internet Of Things Could Become | Amazing Science | Scoop.it

75 billion. That's the potential size of the Internet Things sector, which could become a multi-trillion dollar market by the end of the decade.


That's a very big number of devices that Morgan Stanley has extrapolated from a Cisco report that details how many devices will be connected to the Internet of Things by 2020. That's 9.4 devices for every one of the 8 billion people that's expected to be around in seven years.


To help put that into more perspective, back in Cisco also came out with the number of devices it thinks were connected to the Internet in 2012, a number Cisco's Rob Soderbery placed at 8.7 billion. Most of the devices at the time, he acknowledged were the PCs, laptops, tablets and phones in the world. But other types of devices will soon dominate the collection of the Internet of Things, such as sensors and actuators.


By the end of the decade, a nearly nine-fold increase in the volume of devices on the Internet of Things will mean a lot of infrastructure investment and market opportunities will available in this sector. And by "a lot," I mean ginourmous. In an interview with Barron's, Cisco CEO John Chambers figures that will translate to a $14-trillion industry.


Granted, Cisco has a lot of reasons to be bullish about the prospect of the Internet of Things: with product offerings in the router and switch space and a recent keen interest on building intelligent routing and application platforms right inside those devices, Cisco stands to gain a lot of business if it can get itself out in front of this newfangled Internet of Things.


It's not just Cisco talking up the Internet of Things: late last week, Morgan Stanley published a big 29-page research note on the topic that sought to at once define the Internet of Things and also quantify its size, growth and potential to make money.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

WHO: Ebola virus disease fact sheet

WHO: Ebola virus disease fact sheet | Amazing Science | Scoop.it
The Ebola virus causes an acute, serious illness which is often fatal if untreated. Ebola virus disease (EVD) first appeared in 1976 in 2 simultaneous outbreaks, one in Nzara, Sudan, and the other in Yambuku, Democratic Republic of Congo. The latter occurred in a village near the Ebola River, from which the disease takes its name.

The current outbreak in west Africa, (first cases notified in March 2014), is the largest and most complex Ebola outbreak since the Ebola virus was first discovered in 1976. There have been more cases and deaths in this outbreak than all others combined. It has also spread between countries starting in Guinea then spreading across land borders to Sierra Leone and Liberia, by air (1 traveller only) to Nigeria, and by land (1 traveller) to Senegal.

The most severely affected countries, Guinea, Sierra Leone and Liberia have very weak health systems, lacking human and infrastructural resources, having only recently emerged from long periods of conflict and instability. On August 8, the WHO Director-General declared this outbreak a Public Health Emergency of International Concern.

A separate, unrelated Ebola outbreak began in Boende, Equateur, an isolated part of the Democratic Republic of Congo.

The virus family Filoviridae includes 3 genera: Cuevavirus, Marburgvirus, and Ebolavirus. There are 5 species that have been identified: Zaire, Bundibugyo, Sudan, Reston and Taï Forest. The first 3, Bundibugyo ebolavirus, Zaire ebolavirus, and Sudan ebolavirus have been associated with large outbreaks in Africa. The virus causing the 2014 west African outbreak belongs to the Zaire species.


Key facts

  • Ebola virus disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness in humans.
  • The virus is transmitted to people from wild animals and spreads in the human population through human-to-human transmission.
  • The average EVD case fatality rate is around 50%. Case fatality rates have varied from 25% to 90% in past outbreaks.
  • The first EVD outbreaks occurred in remote villages in Central Africa, near tropical rainforests, but the most recent outbreak in west Africa has involved major urban as well as rural areas.
  • Community engagement is key to successfully controlling outbreaks. Good outbreak control relies on applying a package of interventions, namely case management, surveillance and contact tracing, a good laboratory service, safe burials and social mobilisation.
  • Early supportive care with rehydration, symptomatic treatment improves survival. There is as yet no licensed treatment proven to neutralise the virus but a range of blood, immunological and drug therapies are under development.
  • There are currently no licensed Ebola vaccines but 2 potential candidates are undergoing evaluation.


more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New evidence of ancient multicellular life sets evolutionary timeline back 60 million years

New evidence of ancient multicellular life sets evolutionary timeline back 60 million years | Amazing Science | Scoop.it

A Virginia Tech geobiologist with collaborators from the Chinese Academy of Sciences have found evidence in the fossil record that complex multicellularity appeared in living things about 600 million years ago – nearly 60 million years before skeletal animals appeared during a huge growth spurt of new life on Earth known as the Cambrian Explosion.

The discovery published online Wednesday in the journal Nature contradicts several longstanding interpretations of multicellular fossils from at least 600 million years ago.


"This opens up a new door for us to shine some light on the timing and evolutionary steps that were taken by multicellular organisms that would eventually go on to dominate the Earth in a very visible way," said Shuhai Xiao, a professor of geobiology in the Virginia Tech College of Science. "Fossils similar to these have been interpreted as bacteria, single-cell eukaryotes, algae, and transitional forms related to modern animals such as sponges, sea anemones, or bilaterally symmetrical animals. This paper lets us put aside some of those interpretations."


In an effort to determine how, why, and when multicellularity arose from single-celled ancestors, Xiao and his collaborators looked at phosphorite rocks from the Doushantuo Formation in central Guizhou Province of South China, recovering three-dimensionally preserved multicellular fossils that showed signs of cell-to-cell adhesion, differentiation, and programmed cell death—qualities of complex multicellular eukaryotes such as animals and plants.


The discovery sheds light on how and when solo cells began to cooperate with other cells to make a single, cohesive life form. The complex multicellularity evident in the fossils is inconsistent with the simpler forms such as bacteria and single-celled life typically expected 600 million years ago.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Iso-propyl cyanide has been detected in a star-forming cloud 27,000 light-years from Earth

Iso-propyl cyanide has been detected in a star-forming cloud 27,000 light-years from Earth | Amazing Science | Scoop.it

Scientists have found the beginnings of life-bearing chemistry at the centre of the galaxy. Iso-propyl cyanide has been detected in a star-forming cloud 27,000 light-years from Earth. Its branched carbon structure is closer to the complex organic molecules of life than any previous finding from interstellar space.


The discovery suggests the building blocks of life may be widespread throughout our galaxy. Various organic molecules have previously been discovered in interstellar space, but i-propyl cyanide is the first with a branched carbon backbone.


The branched structure is important as it shows that interstellar space could be the origin of more complex branched molecules, such as amino acids, that are necessary for life on Earth. Dr Arnaud Belloche from the Max Planck Institute for Radio Astronomy is lead author of the research, which appears in the journal Science.


"Amino acids on Earth are the building blocks of proteins, and proteins are very important for life as we know it. The question in the background is: is there life somewhere else in the galaxy?"

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

HAT-P-11b exo-Neptune with clear skies: Smallest exoplanet ever found to have steamy water vapour

HAT-P-11b exo-Neptune with clear skies: Smallest exoplanet ever found to have steamy water vapour | Amazing Science | Scoop.it
Astronomers using data from the NASA/ESA Hubble Space Telescope, the Spitzer Space Telescope, and the Kepler Space Telescope have discovered clear skies and steamy water vapour on a planet outside our Solar System. The planet, known as HAT-P-11b, is about the size of Neptune, making it the smallest exoplanet ever on which water vapour has been detected. The results will appear in the online version of the journal Nature on 24 September 2014.


The discovery is a milestone on the road to eventually finding molecules in the atmospheres of smaller, rocky planets more akin to Earth. Clouds in the atmospheres of planets can block the view of what lies beneath them. The molecular makeup of these lower regions can reveal important information about the composition and history of a planet. Finding clear skies on a Neptune-size planet is a good sign that some smaller planets might also have similarly good visibility.


"When astronomers go observing at night with telescopes, they say 'clear skies' to mean good luck," said Jonathan Fraine of the University of Maryland, USA, lead author of the study. "In this case, we found clear skies on a distant planet. That's lucky for us because it means clouds didn't block our view of water molecules."


HAT-P-11b is a so-called exo-Neptune — a Neptune-sized planet that orbits another star. It is located 120 light-years away in the constellation of Cygnus (The Swan). Unlike Neptune, this planet orbits closer to its star, making one lap roughly every five days. It is a warm world thought to have a rocky core, a mantle of fluid and ice, and a thick gaseous atmosphere. Not much else was known about the composition of the planet, or other exo-Neptunes like it, until now.

"We set out to look at the atmosphere of HAT-P-11b without knowing if its weather would be cloudy or not," said Nikku Madhusudhan, from the University of Cambridge, UK, part of the study team. "By using transmission spectroscopy, we could use Hubble to detect water vapour in the planet. This told us that the planet didn't have thick clouds blocking the view and is a very hopeful sign that we can find and analyze more cloudless, smaller, planets in the future. It is groundbreaking!"


Before the team could celebrate they had to be sure that the water vapour was from the planet and not from cool starspots — "freckles" on the face of stars — on the parent star. Luckily, Kepler had been observing the patch of sky in which HAT-P-11b happens to lie for years. Those visible-light data were combined with targeted infrared Spitzer observations. By comparing the datasets the astronomers could confirm that the starspots were too hot to contain any water vapour, and so the vapour detected must belong to the planet.


The results from all three telescopes demonstrate that HAT-P-11b is blanketed in water vapour, hydrogen gas, and other yet-to-be-identified molecules. So in fact it is not only the smallest planet to have water vapour found in its atmosphere but is also the smallest planet for which molecules of any kind have been directly detected using spectroscopy [1]. Theorists will be drawing up new models to explain the planet's makeup and origins.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Superabsorbing ring could make light work of snaps, be the ultimate camera pixel

Superabsorbing ring could make light work of snaps, be the ultimate camera pixel | Amazing Science | Scoop.it
A quantum effect in which excited atoms team up to emit an enhanced pulse of light can be turned on its head to create 'superabsorbing' systems that could make the 'ultimate camera pixel'.


'Superradiance', a phenomenon where a group of atoms charged up with energy act collectively to release a far more intense pulse of light than they would individually, is well-known to physicists. In theory the effect can be reversed to create a device that draws in light ultra-efficiently. This could be revolutionary for devices ranging from digital cameras to solar cells. But there's a problem: the advantage of this quantum effect is strongest when the atoms are already 50% charged -- and then the system would rather release its energy back as light than absorb more.


Now a team led by Oxford University theorists believes it has found the solution to this seemingly fundamental problem. Part of the answer came from biology. 'I was inspired to study ring molecules, because they are what plants use in photosynthesis to extract energy from the Sun,' said Kieran Higgins of Oxford University's Department of Materials, who led the work. 'What we then discovered is that we should be able to go beyond nature's achievement and create a 'quantum superabsorber'.'


A report of the research is published in Nature Communications.

At the core of the new design is a molecular ring, which is charged to 50% by a laser pulse in order to reach the ideal superabsorbing state. 'Now we need to keep it in that condition' notes Kieran. For this the team propose exploiting a key property of the ring structure: each time it absorbs a photon, it becomes receptive to photons of a slightly higher energy. Charging the device is like climbing a ladder whose rungs are increasingly widely spaced.


'Let's say it starts by absorbing red light from the laser,' said Kieran, 'once it is charged to 50% it now has an appetite for yellow photons, which are higher energy. And we'd like it to absorb new yellow photons, but NOT to emit the stored red photons.' This can be achieved by embedding the device into a special crystal that suppresses red light: it makes it harder for the ring to release its existing energy, so trapping it in the 50% charged state.


The final ingredient of the design is a molecular 'wire' that draws off the energy of newly absorbed photons. 'If you built a system with a capacity of 100 energy units the idea would be to 'half-charge' it to 50 units, and the wire would then 'harvest' every unit over 50,' said Kieran. 'It's like an overflow pipe in plumbing -- it is engineered to take the energy level down to 50, but no lower.' This means that the device can handle the absorption of many photons in quick succession when it is exposed to a bright source, but in the dark it will simply sit in the superabsorbing state and efficiently grab any rare passing photon.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New nanoscale structure leads to better and cheaper LEDs for phones and lighting

New nanoscale structure leads to better and cheaper LEDs for phones and lighting | Amazing Science | Scoop.it
Princeton University researchers have developed a new method to increase the brightness, efficiency and clarity of LEDs, which are widely used on smartphones and portable electronics as well as becoming increasingly common in lighting.


Using a new nanoscale structure, the researchers, led by electrical engineering professor Stephen Chou, increased the brightness and efficiency of LEDs made of organic materials (flexible carbon-based sheets) by 58 percent. The researchers also report their method should yield similar improvements in LEDs made in inorganic (silicon-based) materials used most commonly today.


The method also improves the picture clarity of LED displays by 400 percent, compared with conventional approaches. In an article published online August 19 in the journal Advanced Functional Materials, the researchers describe how they accomplished this by inventing a technique that manipulates light on a scale smaller than a single wavelength.


"New nanotechnology can change the rules of the ways we manipulate light," said Chou, who has been working in the field for 30 years. "We can use this to make devices with unprecedented performance."

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

MIT scientists recruit anthrax' toxin injection mechanism to deliver cancer drugs

MIT scientists recruit anthrax' toxin injection mechanism to deliver cancer drugs | Amazing Science | Scoop.it

Bacillus anthracis bacteria have very efficient machinery for injecting toxic proteins into cells, leading to the potentially deadly infection known as anthrax. A team of MIT researchers has now hijacked that delivery system for a different purpose: administering cancer drugs.


“Anthrax toxin is a professional at delivering large enzymes into cells,” says Bradley Pentelute, the Pfizer-Laubauch Career Development Assistant Professor of Chemistry at MIT. “We wondered if we could render anthrax toxin nontoxic, and use it as a platform to deliver antibody drugs into cells.”


In a paper appearing in the journal ChemBioChem, Pentelute and colleagues showed that they could use this disarmed version of the anthrax toxin to deliver two proteins known as antibody mimics, which can kill cancer cells by disrupting specific proteins inside the cells. This is the first demonstration of effective delivery of antibody mimics into cells, which could allow researchers to develop new drugs for cancer and many other diseases, says Pentelute, the senior author of the paper.


Antibodies — natural proteins the body produces to bind to foreign invaders — are a rapidly growing area of pharmaceutical development. Inspired by natural protein interactions, scientists have designed new antibodies that can disrupt proteins such as the HER2 receptor, found on the surfaces of some cancer cells. The resulting drug, Herceptin, has been successfully used to treat breast tumors that overexpress the HER2 receptor.


Several antibody drugs have been developed to target other receptors found on cancer-cell surfaces. However, the potential usefulness of this approach has been limited by the fact that it is very difficult to get proteins inside cells. This means that many potential targets have been “undruggable,” Pentelute says.


“Crossing the cell membrane is really challenging,” he says. “One of the major bottlenecks in biotechnology is that there really doesn’t exist a universal technology to deliver antibodies into cells.”


For inspiration to solve this problem, Pentelute and his colleagues turned to nature. Scientists have been working for decades to understand how anthrax toxins get into cells; recently researchers have started exploring the possibility of mimicking this system to deliver small protein molecules as vaccines.


The anthrax toxin has three major components. One is a protein called protective antigen (PA), which binds to receptors called TEM8 and CMG2 that are found on most mammalian cells. Once PA attaches to the cell, it forms a docking site for two anthrax proteins called lethal factor (LF) and edema factor (EF). These proteins are pumped into the cell through a narrow pore and disrupt cellular processes, often resulting in the cell’s death.


However, this system can be made harmless by removing the sections of the LF and EF proteins that are responsible for their toxic activities, leaving behind the sections that allow the proteins to penetrate cells. The MIT team then replaced the toxic regions with antibody mimics, allowing these cargo proteins to catch a ride into cells through the PA channel.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

US has 4,200 gigawatts of offshore winds and studies show wind farms will not harm marine mammals and birds

US has 4,200 gigawatts of offshore winds and studies show wind farms will not harm marine mammals and birds | Amazing Science | Scoop.it
The United States has plenty of strong winds offshore, but it has struggled to harness them for energy. 


In theory, the potential is tremendous. Including harder-to-reach deep-water sites, the offshore territory of the United States has the capacity to generate an estimated 4,200 gigawatts of electricity, enough to supply four times the nation’s current needs. But before the field can take off, proponents will have to prove that offshore wind can compete financially against other energy sources, and can clear the thicket of state and federal regulations that govern projects in coastal waters.


“I don’t think we’re looking at easy street here,” says Walt Musial, a long-time offshore-wind researcher at the National Renewable Energy Laboratory in Louisville, Colorado. “We really need to demonstrate that it can be done.”


No project encapsulates the challenges facing offshore wind power better than Cape Wind, being developed by Energy Management of Boston, Massachusetts. The venture aims to take advantage of the strong winds and relatively calm waters of Nantucket Sound near Cape Cod, Massachusetts, some 350 kilometres southwest of Castine.


The plan for Cape Wind consists of 130 turbines, each standing nearly 80 metres tall, over an area of 65 square kilometres. Energy Management says that the completed wind farm will have a capacity of 468 megawatts, able to produce 75% of the electricity for Cape Cod and the nearby islands of Martha’s Vineyard and Nantucket.


But the project has faced strong opposition for more than a decade. Organizations including the non-profit group Save Our Sound have brought dozens of lawsuits against Cape Wind, claiming that the project would harm birds and other wildlife, increase electricity rates for consumers and endanger aeroplanes flying into local airspace.Except for one temporary decision, all of the judicial rulings have been in favour of Cape Wind. Spokes­person Mark Rodgers says that even with court appeals coming, the project intends to commence construction by spring 2015. “There are no merits to any of these legal complaints,” he says.


Cape Wind has already broken new ground by being the first US offshore wind project to complete a major environmental assessment. That study — thousands of pages long — and independent analyses have helped to appease some groups that were sceptical of the initial proposal.

more...
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

This Device Lets Fully Paralyzed Rats Walk Again, and Human Trials Are Planned

This Device Lets Fully Paralyzed Rats Walk Again, and Human Trials Are Planned | Amazing Science | Scoop.it

In the past few years, there have been some pretty impressive breakthroughs for those suffering from partial paralysis, but a frustrating lack of successes when it comes to those who are fully paralyzed. But a new technique pioneered by scientists working on project NEUWalk at the Swiss Federal Institute for Technology (EPFL) have figured out a way to reactivate the severed spinal cords of fully paralyzed rats, allowing them to walk again via remote control. And, the researchers say, their system is just about ready for human trials.


Previous studies have had some success in using epidural electrical stimulation (EES) to improve motor control in rodents and humans with spinal cord injuries. However, electrocuting neurons in order to get allow natural walking is no easy task, and it requires extremely quick and precise stimulation. 


As the researchers wrote in a study published in Science Translational Medicine, "manual adjustment of pulse width, amplitude, and frequency" of the electrical signal being supplied to the spinal cord was required in EES treatment, until now. 


Manual adjustments don't exactly work when you're trying to walk.

The team developed algorithms that can generate and accommodate feedback in real-time during leg movement, making motion natural. Well, sort of. We’re talking about rats with severed spinal cords hooked up to electrodes being controlled by advanced algorithms, after all.


"We have complete control of the rat's hind legs," EPFL neuroscientist Grégoire Courtine said in a statement. "The rat has no voluntary control of its limbs, but the severed spinal cord can be reactivated and stimulated to perform natural walking. We can control in real-time how the rat moves forward and how high it lifts its legs."

more...
No comment yet.