Amazing Science
456.9K views | +233 today
Scooped by Dr. Stefan Gruenwald
onto Amazing Science!

INTEL to push many-integrated core chips (MIC) aggressively for Exascale computing by 2018

INTEL to push many-integrated core chips (MIC) aggressively for Exascale computing by 2018 | Amazing Science |

Intel calls this family of products MIC - Many Integrated Core, chips, or 'Knights' line. The first MIC to be offered to the discerning public, in a limited quantity for a sort of pilot introduction, is 'Knights Corner', basically a GPU-like PCIe accelerator card with a 22-nm process MIC chip that integrates some 50 cores for roughly 1 TFLOPs DP FP performance, or nearly 6 times that of the Xeon E5 top processor bin right now, within a similar power budget - a critical point required to get to, say, Petaflop within 10 racks now, or Exaflop level performance within a single datacentre size and power budget in 2018.

No comment yet.
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Scooped by Dr. Stefan Gruenwald!

20,000+ FREE Online Science and Technology Lectures from Top Universities

20,000+ FREE Online Science and Technology Lectures from Top Universities | Amazing Science |

NOTE: To subscribe to the RSS feed of Amazing Science, copy into the URL field of your browser and click "subscribe".


This newsletter is aggregated from over 1450 news sources:


All my Tweets and Scoop.It! posts sorted and searchable:



You can search through all the articles semantically on my

archived twitter feed


NOTE: All articles in the amazing-science newsletter can also be sorted by topic. To do so, click the FIND buntton (symbolized by the FUNNEL on the top right of the screen)  and display all the relevant postings SORTED by TOPICS.


You can also type your own query:


e.g., you are looking for articles involving "dna" as a keyword

Or CLICK on the little

FUNNEL symbol at the

 top right of the screen


MOST_READ • 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • history • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video 

Siegfried Holle's curator insight, July 4, 2014 8:45 AM

Your knowledge is your strength and power 

Saberes Sin Fronteras OVS's curator insight, November 30, 2014 5:33 PM

Acceso gratuito a documentos de las mejores universidades del mundo

♥ princess leia ♥'s curator insight, December 28, 2014 11:58 AM

WoW  .. Expand  your mind!! It has room to grow!!! 

Scooped by Dr. Stefan Gruenwald!

Scientists name the deepest cave-dwelling centipede after Hades - the Greek God of the underworld

Scientists name the deepest cave-dwelling centipede after Hades - the Greek God of the underworld | Amazing Science |

An international team of scientists has discovered the deepest underground dwelling centipede. The animal was found by members of the Croatian Biospeleological Society in three caves in Velebit Mts, Croatia. Recorded as deep as -1100 m the new species was namedGeophilus hadesi, after Hades, the God of the Underworld in the Greek Mythology. The research was published in the open access journal ZooKeys.

Lurking in the dark vaults of some of the world's deepest caves, the Hades centipede has also had its name picked to pair another underground-dwelling relative named after Persephone, the queen of the underworld. Centipedes are carnivores that feed on other invertebrate animals. They are common cave inhabitants but members of this particular order, called geophilomorphs, usually find shelter there only occasionally. Species with an entire life cycle confined to cave environments are exceptionally rare in the group.

In fact, so far the Hades and Persephone centipedes are the only two geophilomorphs that have adapted to live exclusively in caves, thus rightfully bearing the titles of a queen and king of the underworld.

Like most cave-dwellers, the newly discovered centipede shows unusual traits, some of which commonly found in cave-dwelling arthropods, including much elongated antennae, trunk segments and leg claws. Equipped with powerful jaws bearing poison glands and long curved claws allowing to grasp and tightly hold its prey, the Hades centipede is among the top predators crawling in the darkness of the cave.

The new species is yet another addition to the astonishing cave critters that live in the Velebit, a mountain that stretches over 145 km in the Croatian Dinaric Karst, which is as a whole considered a hot spot of subterranean diversity. The deepest record comes from the Lukina jama - Trojama cave system, which is 1431 meters deep and is currently ranked the 15th deepest cave in the world.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Most internet anonymity software leaks users’ details

Most internet anonymity software leaks users’ details | Amazing Science |

Virtual Private Networks (VPNs) are legal and increasingly popular for individuals wanting to circumvent censorship, avoid mass surveillance or access geographically limited services like Netflix and BBC iPlayer. Used by around 20 per cent of European internet users they encrypt users’ internet communications, making it more difficult for people to monitor their activities.

The study of fourteen popular VPN providers found that eleven of them leaked information about the user because of a vulnerability known as ‘IPv6 leakage’. The leaked information ranged from the websites a user is accessing to the actual content of user communications, for example comments being posted on forums. Interactions with websites running HTTPS encryption, which includes financial transactions, were not leaked.

The leakage occurs because network operators are increasingly deploying a new version of the protocol used to run the Internet called IPv6. IPv6 replaces the previous IPv4, but many VPNs only protect user’s IPv4 traffic. The researchers tested their ideas by choosing fourteen of the most famous VPN providers and connecting various devices to a WiFi access point which was designed to mimic the attacks hackers might use.

Researchers attempted two of the kinds of attacks that might be used to gather user data – ‘passive monitoring’, simply collecting the unencrypted information that passed through the access point; and DNS hijacking, redirecting browsers to a controlled web server by pretending to be commonly visited websites like Google and Facebook.

The study also examined the security of various mobile platforms when using VPNs and found that they were much more secure when using Apple’s iOS, but were still vulnerable to leakage when using Google’s Android.

Dr Gareth Tyson, a lecturer from QMUL and co-author of the study, said: “There are a variety of reasons why someone might want to hide their identity online and it’s worrying that they might be vulnerable despite using a service that is specifically designed to protect them.

“We’re most concerned for those people trying to protect their browsing from oppressive regimes. They could be emboldened by their supposed anonymity while actually revealing all their data and online activity and exposing themselves to possible repercussions.”

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Interfering light waves produce unexpected forces

Interfering light waves produce unexpected forces | Amazing Science |

Few physical systems are better understood than the interference of two planar waves—like ripples on a pond. Proving that there are still secrets to be discovered even in such fundamentally well-known systems, RIKEN researchers Konstantin Bliokh, Aleksandr Bekshaev and Franco Nori have used theory to reveal a new, hidden force in this system that acts on particles in an unexpected way ("Transverse Spin and Momentum in Two-Wave Interference").

Two-dimensional waves have been studied for centuries: initially to understand the intrinsic behavior of waves and more recently to understand the fundamental mechanics of quantum physics. “The interference between two plane waves has always provided an important model for understanding the basic features of waves,” notes Bliokh. “It is difficult to find a simpler and more thoroughly studied system in physics. We show that such a basic system still exhibits unexpected and unusual features.”

Recent research has showed that interfering planar waves can have unusual properties on a small scale. For over a century, waves such as light beams have been known to carry both momentum and angular momentum in the direction of the propagating wave and this momentum can be used to move and rotate small particles. This is consistent with the common understanding of photons as particles carrying momentum and spin. On the local scale in non-plane-wave optical fields, however, light can also impart forces and torques perpendicular to the light beam, counterintuitive to our everyday experience. These unusual effects have been noticed in highly confined near-field radiation known as evanescent waves, but so far they have not turned up in freely propagating light waves.

In a comprehensive theoretical study, the scientists, from the RIKEN Center for Emergent Matter Science and Interdisciplinary Theoretical Science Research Group (iTHES), revisited the concept of two propagating waves interfering in the same plane. Their mathematical analysis of this system revealed that even this well-studied example of interfering waves can exert a force and torque on a small particle perpendicular to both waves (see figure). Both the force and torque are strongly dependent on the polarization of the two interfering waves, which differs to the conventional experience of waves carrying the same momentum irrespective of their polarizations.

The possibility of realizing such an effect in an actual experimental system and to potentially control it through parameters such as polarization is attractive and, Nori predicts, practically feasible. “Our findings offer a new vision for the fundamental properties of propagating optical fields and pave the way for novel optical manipulations of small particles.”

No comment yet.
Scooped by Dr. Stefan Gruenwald!

New nanogenerator harvests power from rolling tires

New nanogenerator harvests power from rolling tires | Amazing Science |
A group of University of Wisconsin-Madison engineers and a collaborator from China have developed a nanogenerator that harvests energy from a car's rolling tire friction.

An innovative method of reusing energy, the nanogenerator ultimately could provide automobile manufacturers a new way to squeeze greater efficiency out of their vehicles.

The researchers reported their development, which is the first of its kind, in a paper published May 6, 2015, in the journal Nano Energy.

Xudong Wang, the Harvey D. Spangler fellow and an associate professor of materials science and engineering at UW-Madison, and his PhD student Yanchao Mao have been working on this device for about a year.

The nanogenerator relies on the triboelectric effect to harness energy from the changing electric potential between the pavement and a vehicle's wheels. The triboelectric effect is the electric charge that results from the contact or rubbing together of two dissimilar objects. Wang says the nanogenerator provides an excellent way to take advantage of energy that is usually lost due to friction.

"The friction between the tire and the ground consumes about 10 percent of a vehicle's fuel," he says. "That energy is wasted. So if we can convert that energy, it could give us very good improvement in fuel efficiency." The nanogenerator relies on an electrode integrated into a segment of the tire. When this part of the tire surface comes into contact with the ground, the friction between those two surfaces ultimately produces an electrical charge-a type of contact electrification known as the triboelectric effect.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Fish diversity exploded when dinosaurs went extinct

Fish diversity exploded when dinosaurs went extinct | Amazing Science |

The ray-finned fishes, so called because their fins are supported by bony spines or rays, make up more than 95% of all fish species. They come in all shapes and sizes, from the showy lionfish (pictured above) to the delicious Atlantic salmon. Yet paleontologists have been unsure when and why ray-finned fishes exploded into such prominence, in large part because the preservation of fish fossils is a very hit-or-miss affair. Now, researchers have taken a new approach to the problem: They looked at marine sediments taken from deep-sea cores at six sites around the world, including the Atlantic and Pacific oceans. To figure out when ray-finned fish numbers took off, they calculated the ratio of fossilized teeth from ray-finned fishes to the fossilized scales from another major group of fish: sharks.

As they report online this week in the Proceedings of the National Academy of Sciences (PNAS), this ratio shows that sharks well outnumbered the ray-finned fish at the end of the Cretaceous, about 66 million years ago. That was when dinosaurs, ammonites, and most marine reptiles went extinct, probably because of a large asteroid hitting Earth. After the extinction event, the ratio of these ray-finned fish remains shot up dramatically, quickly outnumbering those of sharks. Although the sharks also survived the end of the Cretaceous, their numbers appear to have remained flat, whereas the size and diversity of ray-finned fish populations took off. The researchers suggest that the mass extinction, especially of ammonites (which probably competed with fish for food), allowed the ray-fins to exploit new ecological niches and launched what the authors call a “new age of fish.”

No comment yet.
Scooped by Dr. Stefan Gruenwald!

With deep learning and dimensionality reduction, we can visualize the entirety of Wikipedia?

With deep learning and dimensionality reduction, we can visualize the entirety of Wikipedia? | Amazing Science |

Deep neural networks are an approach to machine learning that has revolutionized computer vision and speech recognition in the last few years, blowing the previous state of the art results out of the water. They’ve also brought promising results to many other areas, including language understanding and machine translation. Despite this, it remains challenging to understand what, exactly, these networks are doing.

Understanding neural networks is just scratching the surface, however, because understanding the network is fundamentally tied to understanding the data it operates on. The combination of neural networks and dimensionality reduction turns out to be a very interesting tool for visualizing high-dimensional data – a much more powerful tool than dimensionality reduction on its own.

Paragraph vectors, introduced by Le & Mikolov (2014), are vectors that represent chunks of text. Paragraph vectors come in a few variations but the simplest one, which we are using here, is basically some really nice features on top of a bag of words representation.

With word embeddings, we learn vectors in order to solve a language task involving the word. With paragraph vectors, we learn vectors in order to predict which words are in a paragraph.

Concretely, the neural network learns a low-dimensional approximation of word statistics for different paragraphs. In the hidden representation of this neural network, we get vectors representing each paragraph. These vectors have nice properties, in particular that similar paragraphs are close together.

Now, Google has some pretty awesome people. Andrew Dai, Quoc Le, and Greg Corrado decided to create paragraph vectors for some very interesting data sets. One of those was Wikipedia, creating a vector for every English Wikipedia article. The result is that we get a visualization of the entirety of Wikipedia. A map of Wikipedia. A large fraction of Wikipedia’s articles fall into a few broad topics: sports, music (songs and albums), films, species, and science.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Hubble Captures Image of Rare Wolf-Rayet Galaxy

Hubble Captures Image of Rare Wolf-Rayet Galaxy | Amazing Science |
The Advanced Camera for Surveys, one of the Hubble’s advanced instruments, has taken a spectacularly detailed image of a galaxy called SBS 1415+437.

Discovered in 1995 by a team of astronomers from the United States and Ukraine, SBS 1415+437 lies in the constellation Boötes at a distance of about 45.3 million light-years. It is a galaxy type known as a cometary blue compact dwarf galaxy. Astronomers initially thought that SBS 1415+437 was a truly young galaxy that did not start to form stars until 100 million years ago, but a recent study has suggested that the galaxy is in fact older, containing stars 1.3 billion years old.

SBS 1415+437, otherwise known as PGC 51017, SBSG 1415+437 or SDSS CGB 12067.1, also belongs to a rare group of starburst galaxies called Wolf–Rayet galaxies. The galaxy has an unusually high number of extremely hot and massive Wolf–Rayet stars. These stars are among the largest and shortest lived stars known, typically over 20 solar masses with surface temperatures well over 25,000 K. Many of the brightest and most massive stars in the Milky Way are Wolf–Rayet stars.

These massive stars are in the stage of their stellar evolution where they undergo heavy mass loss. A typical Wolf–Rayet star can lose a mass equal to that of our Sun in just 100,000 years. Because of this it is unusual to find more than a few of these stars per galaxy – except in Wolf–Rayet galaxies, like the one in this image.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

New “corner cloak” directs light around sharp edges

New “corner cloak” directs light around sharp edges | Amazing Science |

From fun-house mirrors to holograms, we have all experienced incredible optical illusions. Right now, scientists are fascinated by the prospect of finding a way to perform an even more challenging trick: hiding things in plain sight. We've made some metamaterials that have refractive indices that can redirect particular wavelengths of light. But one issue scientists have found particularly difficult to address is how to mask corners. Sharp corners are pretty common, and it's difficult to figure out ways to guide the surface waves of light around corners, as the light experiences scattering loss when encountering sharp corners. 

That's because there is a large mismatch in momentum of the light waves at the surface of an object before and after passing around the corner of an extremely compact shape. Though scientists have successfully developed a few materials that can perform scattering-free guidance of surface waves around corners, these methods are limited. They rely on photonic crystals with a large magnetic response, which limits the types of waves it can influence.

When waves encounter a sharp corner, they pass through compact space, which causes the change in momentum (yes, photons have momentum). More advanced cloaking methods have focused on compensating for this change in momentum by curving the electromagnetic space in a way that tricks light waves into behaving as if they're moving in a straight line. Through this method, transformative optics has made strides towards developing a real invisibility cloak.

In the new work, scientists have demonstrated a way of bending surface light waves around sharp corners, one that works across a broad range of wavelengths, exhibiting almost ideal transmission. This method is able to bend the waves in a way that does not disturb other wave properties, such as the amplitude and phase. This could actually allow for the development of an invisibility cloak.

The scientists created bending adaptors that were essentially “corner cloaks”—able to hide corners as the waves traveled around them. Physically, the corner cloaks are triangular pieces that can be placed over a sharp corner. The cloaks are made of layered structures of subwavelength foam and ceramic materials that had a refractive index that's able to redirect light. Experimental results show that the cloaks almost completely conceal their presence from anyone looking at the light that passed through them. It appears that the ultimate Harry Potter fantasy might be right around the corner for some of us.

PNAS, 2015. DOI: 10.1073/pnas.1508777112  (About DOIs).

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Why Crispr-Cas9 Gene-Editing Technology Has Scientists Excited

Why Crispr-Cas9 Gene-Editing Technology Has Scientists Excited | Amazing Science |
Researchers are exploring the idea of treating disease by replacing the defective gene causing the trouble

A new technology for “editing” defective genes has raised hopes for a future generation of medicines treating intractable diseases like cancer, cystic fibrosis and sickle-cell anemia. Such drugs could home in on a specific gene causing a disease, then snip it out and, if necessary, replace it with a healthy segment of DNA. Drugs of this type wouldn’t hit the mass market for years, if ever; pharmaceutical firms are only now exploring how to make drugs using the gene-editing technology, called Crispr-Cas9. But the approach offers tremendous potential for developing new treatments for diseases caused by a mutated gene.

“What if you could go right to the root cause of that disease and repair the broken gene? That’s what people are excited about,” says Katrine Bosley, chief executive of privately held Editas Medicine. Its projects include developing a gene-editing drug treating one type of Leber congenital amaurosis, a rare disease that causes blindness in children.

Crispr-Cas9 isn’t the only technology capable of editing genes, but researchers consider it easier to use than other methods, says Dana Carroll, a professor of biochemistry at the University of Utah School of Medicine, who helped pioneer another gene-editing approach called zinc finger nucleases.

Among other efforts under way using Crispr-Cas9 technology, privately held Intellia Therapeutics Inc., in partnership with Novartis AG, is probing how to create a gene-editing drug that could harness the immune system to fight certain blood cancers. The two companies are also exploring the treatment of hereditary blood disorders like sickle-cell anemia and beta thalassemia.

Intellia CEO Nessan Bermingham says drugs based on Crispr-Cas9 promise to complement the pills and biotech drugs currently available, targeting diseases that aren’t well treated by existing therapies. “This is a new tool to target and treat disease,” he says. Industry and academic laboratories are also using the technology for more immediate effect: to genetically engineer mice and other animals so that they have humanlike diseases that researchers can then readily study.

Using Crispr-Cas9 to make the animal models is “much quicker, easier than the other methods that have been available,” says Tim Harris, senior vice president of precision medicine at Biogen Inc. The company is using the technology to study amyotrophic lateral sclerosis, or Lou Gehrig’s disease, which has lacked good animal models.

Crispr-Cas9 attracted notoriety in April, when Chinese scientists reported trying to repair the genes that cause beta thalassemia in 86 human embryos obtained from a fertilization clinic. The work raised fears that gene editing could be used to tweak babies in many ways before they were born.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Tofacitinib Treatment for Vitiligo

Tofacitinib Treatment for Vitiligo | Amazing Science |

Tofacitinib is a JAK 1/3 inhibitor that was approved by the US Food and Drug Administration in 2012 for the treatment of moderate to severe rheumatoid arthritis. Within dermatology, oral and topical formulations of tofacitinib have been demonstrated to be safe and effective for the treatment of plaque psoriasis,37 and researchers have recently described the success of oral tofacitinib in treating alopecia universalis.8 Clinical trials evaluating tofacitinib treatment are presently under way.

Alopecia areata and vitiligo share genetic risk factors and can co-occur within families and individual patients, suggesting a common pathogenesis.9 As such, it is not surprising that a medication that has been shown to be effective in treating alopecia areata8 may also be effective in treating vitiligo. Moreover, recent advances in the scientific understanding of vitiligo support the use of JAK inhibitors for this condition. Interferon-gamma–induced expression of C-X-C motif chemokine 10 (CXCL10) in keratinocytes is an important mediator of depigmentation in vitiligo.2 Antibody neutralization of interferon gamma or CXCL10 reverses depigmentation.10

The researchers now propose that because interferon gamma signal transduction occurs through JAK 1/2,11 the use of the JAK 1/3 inhibitor tofacitinib effectively leads to blockade of interferon gamma signaling and downstream CXCL10 expression, thus giving rise to repigmentation in vitiligo.

This is the first scientific investigation to demonstrate effective pathogenesis-based therapy for a patient with vitiligo. The fairly rapid response and the repigmentation of the hands, which are often resistant to therapy, are noteworthy. Further investigation of the efficacy and safety of tofacitinib in the treatment of patients with vitiligo, including those for whom the condition has been more long-standing, will be important. Although uncommon, serious adverse effects, including malignant disease, have been reported in patients taking tofacitinib; therefore, investigation of the efficacy of a topical formulation for the treatment of localized vitiligo would be useful.

The presented case exemplifies the ways by which advances in basic science can guide treatment decisions and ultimately benefit patients. As scientists better understand the pathomechanisms of different diseases, targeted therapy becomes possible, and existing medications can be repurposed and/or new medications created for diseases with limited, if any, treatment options.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Earth's colossal crater count complete: Just 128 confirmed impact craters have been spotted on Earth’s surface

Earth's colossal crater count complete: Just 128 confirmed impact craters have been spotted on Earth’s surface | Amazing Science |

Study suggests that all craters 6 kilometers across or larger have been found. No more impact craters as big as Canada's Clearwater West and Clearwater East, which measure more than 10 kilometers across, remain to be discovered.

Mars is pocked with more than 300,000 craters, created by asteroid impacts. The moon is blanketed with millions more, too many to count. But the surface of Earth, constantly eroded by wind and rain, hides its history. Just 128 confirmed impact craters have been spotted on Earth’s surface. However, a new study suggests that this low number is not the result of lazy searching; all of the big impact craters on the planet's surface have been found, leaving none to be discovered.

“I'm definitely surprised.” says Brandon Johnson, a planetary scientist at the Massachusetts Institute of Technology in Cambridge, who was not involved in the study. “It’s the first time anyone has done this kind of thing—taking into account the effects of erosion.”

In 2014, Johnson led a similar study, which found that for craters 85 kilometers in diameter and larger, the geologic record ought to be complete. Based on the rate of impacts and the age of the crust, his team predicted eight craters this size, and there are six or seven that have been confirmed. These giant craters are deep enough to survive erosion, but they can be destroyed by plate tectonics, which splits apart, subducts, or otherwise jumbles up the crust the craters sit on—a process Johnson’s study examined.

Now, Stefan Hergarten and Thomas Kenkmann, geophysicists at the University of Freiburg in Germany, have taken the analysis further and found that the documented record is complete down to much smaller impact craters. They combined estimates of asteroid impact rates with rates of erosion, and compared the resulting theoretical crater distribution with what geologists actually see. For the 70 craters larger than 6 kilometers across, the record is complete, they say: There are no more to be found, as the researchers report in Earth and Planetary Science Letters.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Scientists Predict Existence of an Atomically Thin Flat Liquid

Scientists Predict Existence of an Atomically Thin Flat Liquid | Amazing Science |

2D materials were considered impossible until the discovery of graphene around ten years ago. However, they have been observed only in the solid phase, because the thermal atomic motion required for molten materials easily breaks the thin and fragile membrane.

Therefore, the possible existence of an atomically thin flat liquid was considered impossible.

Now, physicists at the University of Jyväskylä have conducted quantum molecular dynamics simulations that predict a liquid phase in atomically thin gold islands that patch small pores of graphene. According to the simulations, gold atoms flow and change places in the plane, while the surrounding graphene template retains the planarity of liquid membrane. “Here the role of graphene is similar to circular rings through which children blow soap bubbles,” said Dr Pekka Koskinen, lead author on the paper published in the journal Nanoscale.

“In general, the existence of a 2D liquid phase requires three conditions. First, the pore template itself has to remain stable at high temperatures, a condition easily met by graphene,” the scientists wrote in the paper.

“Second, edge interactions need to favor planar bonding and be robust enough to endure high temperatures. Our supplementary calculations showed that the gold-carbon interface has bending rigidity comparable to that of the 2D gold membrane, which is sufficient to retain the patch steady under gold diffusion.”

“Third, the membrane itself has to display 2D diffusion before out-of-plane fluctuations grow too large and initiate rupturing.”

Currently the flat liquid exists only in computers and is still waiting for experimental confirmation. “Unfortunately, simulations suggest that the flat liquid is volatile,” Dr Koskinen said. “In experiments the liquid membrane might burst too early, like a soap bubble that bursts before one gets a proper look at it.” “But again, even graphene was previously considered too unstable to exist.”

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Researchers develop 100-fold cheaper and faster way to make graphene

Researchers develop 100-fold cheaper and faster way to make graphene | Amazing Science |

Scientists at the University of Exeter say they've developed a way to make graphene better, cheaper, faster -- and at mass scale. Lead researcher Monica Craciun says the technology, known as the nanoCVD system, promises to usher in "a graphene-driven industrial revolution."

Graphene is a single layer of carbon atoms, organized a honeycomb like structure. The material is super strong, flexible and conductive.

"The vision for a 'graphene-driven industrial revolution' is motivating intensive research on the synthesis of high quality and low cost graphene," Craciun said in a press release. "Currently, industrial graphene is produced using a technique called chemical vapor deposition (CVD). Although there have been significant advances in recent years in this technique, it is still an expensive and time consuming process."

Craciun and her colleagues, in cooperation with U.K.-based graphene company Moorfield, have tweaked CVD technology to develop a "cold wall" device. CVD technology mixes volatile vapors to create a desired deposited material (like a film of graphene) on a substrate.

The research team's new nanoCVD system reportedly grows graphene at a rate 100 times faster than traditional methods, and at one percent of the cost.

"We are very excited about the potential of this breakthrough using Moorfield's technology and look forward to seeing where it can take the graphene industry in the future," said Jon Edgeworth, the company's technical director.
No comment yet.
Scooped by Dr. Stefan Gruenwald!

Anti-aging: FDA-approved cancer drug trametinib extends life span of fruit flies

Anti-aging: FDA-approved cancer drug trametinib extends life span of fruit flies | Amazing Science |

Results shore up the importance of cancer-associated Ras proteins in aging.

A cancer drug that boosts the lifespan of fruit flies is the latest addition to a small roster of compounds shown to lengthen life — although none has yet been proven in humans. Trametinib (Mekinist), which was developed by the London-based pharmaceutical firm GlaxoSmithKline, is already used to treat advanced melanoma. It extends the lifespan of adult fruit flies by about 12%, although the later in life the drug is started, the less effect it has, says Linda Partridge, a geneticist at University College London and the Max Planck Institute for Biology of Ageing in Cologne, Germany, who led the work. Her team’s research is reported on 25 June inCell1But Partridge cautions against rushing to take trametinib in search of a longer life. “That would be mad,” she says. “We just don’t know enough about the long-term consequences.”

Trametinib’s effects are connected to a biochemical pathway controlled by a family of proteins collectively called Ras which seem to be important to both cancer and aging. They are activated when cells need to grow and proliferate, for example to replace damaged tissue. Mutations in the proteins are associated with cancer — which has led to a decades-long pursuit of drugs that target Ras.

At the same time, Ras proteins are involved in other pathways that have been firmly linked to ageing. In yeast, deleting a gene for Ras extends lifespan2, notes Valter Longo, director of the University of Southern California’s Longevity Institute in Los Angeles.

And Partridge’s team showed that trametinib’s benefits in fruit flies depended on suppressing a pathway regulated by Ras. Flies genetically modified to have this pathway permanently switched on did not live longer on trametinib.

Partridge hopes to extend her Ras studies to mammalian cells grown in culture and to mice. “We don’t know in mammals at the moment what the situation is,” she says. Although many of Ras’s functions are similar in flies and mammals, Partridge notes that cellular pathways in mammals are often more complex than the analogous pathways in flies, with multiple alternative routes available to compensate if one branch of the pathway is shut down.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Key element of human language discovered in bird babble for the first time

Key element of human language discovered in bird babble for the first time | Amazing Science |
Stringing together meaningless sounds to create meaningful signals was previously thought to be the preserve of humans alone, but a new study has revealed that babbler birds are also able to communicate in this way.

Researchers at the Universities of Exeter and Zurich discovered that the chestnut-crowned babbler -- a highly social bird found in the Australian Outback -- has the ability to convey new meaning by rearranging the meaningless sounds in its calls. This babbler bird communication is reminiscent of the way humans form meaningful words. The research findings, which are published in the journal PLOS Biology, reveal a potential early step in the emergence of the elaborate language systems we use today.

"In contrast to most songbirds, chestnut-crowned babblers do not sing. Instead its extensive vocal repertoire is characterised by discrete calls made up of smaller acoustically distinct individual sounds." she added.

"We think that babbler birds may choose to rearrange sounds to code new meaning because doing so through combining two existing sounds is quicker than evolving a new sound altogether." said co-author Professor Andy Russell from the University of Exeter who has been studying the babblers since 2004.

The researchers noticed that chestnut-crowned babblers reused two sounds "A" and "B" in different arrangements when performing specific behaviors. When flying, the birds produced a flight call "AB," but when feeding chicks in the nest they emitted "BAB" prompt calls.

When the researchers played the sounds back, the listening birds showed they were capable of discriminating between the different call types by looking at the nests when they heard a feeding prompt call and by looking out for incoming birds when they heard a flight call. This was also the case when the researchers switched elements between the two calls: making flight calls from prompt elements and prompt calls from flight elements, indicating that the two calls were indeed generated from rearrangements of the same sounds.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon

Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon | Amazing Science |
Making new materials with micro-explosions

Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material (Nature Communications"Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion").

The new technique could lead to the simple creation and manufacture of superconductors or high-efficiency solar cells and light sensors, said leader of the research, Professor Andrei Rode, from The Australian National University (ANU)."We've created two entirely new crystal arrangements, or phases, in silicon and seen indications of potentially four more," said Professor Rode, a laser physicist at the ANU Research School of Physics and Engineering (RSPE). "Theory predicts these materials could have very interesting electronic properties, such as an altered band gap, and possibly superconductivity if properly doped."

By focusing lasers onto silicon buried under a clear layer of silicon dioxide, the group have perfected a way to reliably blast tiny cavities in the solid silicon. This creates extremely high pressure around the explosion site and forms the new phases.The phases have complex structures, which took the team of physicists from ANU and University College London a year to understand.Using a combination of electron diffraction patterns and structure predictions, the team discovered the new materials have crystal structures that repeat every 12, 16 or 32 atoms respectively, said Professor Jim Williams, from the Electronic Material Engineering group at RSPE."The micro-explosions change silicon's simplicity to much more complex structures, which opens up possibility for unusual and unexpected properties," he said.These complex phases are often unstable, but the small size of the structures means the materials cool very quickly and solidify before they can decay, said Professor Eugene Gamaly, also from the ANU Research School of Physics and Engineering. The new crystal structures have survived for more than a year now."These new discoveries are not an accident, they are guided by a deep understanding of how lasers interact with matter," he said.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Measles vaccine protects against other deadly diseases

Measles vaccine protects against other deadly diseases | Amazing Science |

Measles kills about 140,000 people worldwide every year, but the millions of kids who have survived the disease aren’t in the clear. A new epidemiological study suggests that they remain susceptible to other infections for more than 2 years, much longer than researchers anticipated. The results bolster a hypothesis that the measles virus undermines the immune system’s memory—and indicate that the measles vaccine protects against other deadly diseases as well.

Researchers have long known that measles inhibits the immune system, but they generally thought this effect wore off after a few months at the most. However, studies of children in developing countries, where most cases occur, found that measles vaccination reduces the overall death rate from infections for up to 5 years, suggesting that preventing the disease somehow provides protection against other illnesses.

One possible explanation for this benefit is that the measles vaccine somehow spurs the immune system to produce defenses against these other diseases. But work on monkeys recovering from measles spawned an alternative hypothesis. In 2012, Rik de Swart of Erasmus MC in Rotterdam, Netherlands, and colleagues revealed that the measles virus kills large numbers of memory cells, white blood cells that prevent subsequent infections by the same pathogen. Thus, the measles virus might cause what the scientists termed immunological amnesia, impairing the immune system’s ability to remember and quickly eliminate other microbes it has already beaten. As a result, “you are vulnerable to diseases you shouldn’t be vulnerable to,” says Michael Mina, lead author of the new paper and a medical student at Emory University School of Medicine in Atlanta.

To test this explanation, a team that included De Swart and Mina, then a postdoc at Princeton University, obtained data on the numbers of measles cases and deaths from other infectious diseases in the United States, Denmark, and part of the United Kingdom. Measles vaccination started in the 1960s in the United Kingdom and United States and in the 1980s in Denmark, and the researchers had statistics from before and after its introduction.

The team’s mathematical analysis tried to determine whether there was a relationship between the number of measles cases and the number of kids who died from other diseases. If the virus inhibits immunity for only a short time, for example, the number of deaths from other infections in a specific year might correlate to the number of measles cases in that year. But if the virus triggers a prolonged immune amnesia, the number of deaths in a particular year might correlate to the total number of cases in that year and the previous year or two.

Using this approach, the researchers calculated that children who survive measles remain vulnerable to other diseases for an average of 2.5 years. The value was almost the same for all three countries, the team reports online today in Science. “Our results suggest that the adverse effects of measles are much more lasting,” Mina says.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

A New Facebook Lab Plans to Deliver Internet Access by Drone

A New Facebook Lab Plans to Deliver Internet Access by Drone | Amazing Science |

Watch out, Google. Facebook is gunning for the title of World’s Coolest Place to Work. And its arsenal includes unmanned drones, lasers, satellites and virtual reality headsets. Mark Zuckerberg, co-founder and chief executive of Facebook, announced on Thursday that the company was creating a new lab of up to 50 aeronautics experts and space scientists to figure out how to beam Internet access down from solar-powered drones and other “connectivity aircraft.”

To start the effort, Facebook is buying Ascenta, a small British company whose founders helped to create early versions of an unmanned solar-powered drone, the Zephyr, which flew for two weeks in July 2010 and broke a world record for time aloft.

“We want to think about new ways of connectivity that dramatically reduce the cost,” said Yael Maguire, engineering director for the new Facebook Connectivity Lab. “We want to explore whether there are ways from the sky to deliver the Internet access.”

It’s the second head-spinning announcement from Facebook this week and the third this year. On Tuesday, the company said it would spend at least $2 billion to buy Oculus VR, a Southern California start-up that is developing virtual reality headsets for playing games and other uses. Last month, it said it would buy WhatsApp, a messaging app that offers free texting around the world, for as much as $19 billion.

The lab is part of Mr. Zuckerberg’s ambitious project to bring the Internet to the two-thirds of the world’s population without Internet access. With partners like Qualcomm and Nokia, Facebook is working on technology to compress Internet data, cut the cost of mobile phones and extend connections to people who can’t afford them or live in places that are too difficult to reach.

That last part of the problem — reaching the 10 percent of the world’s population that are in areas difficult to reach via traditional Internet solutions — is the initial focus of the connectivity lab, said Mr. Maguire.

Currently, satellites can deliver Internet to sparsely populated areas with spotty Internet connections, but the cost is very high, said Mr. Maguire.

Facebook wants to explore whether access could be delivered more cheaply through both new types of satellites and unmanned aircraft.

The company envisions drones that could stay aloft for months, even years, at a time at an altitude of more than 12 miles from the surface of the earth — far above other planes and the ever-changing weather.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

D-Wave Systems Breaks the 1000 Qubit Quantum Computing Barrier

D-Wave Systems Breaks the 1000 Qubit Quantum Computing Barrier | Amazing Science |

New Milestone Will Enable System to Address Larger and More Complex Problems

D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier, developing a processor about double the size of D-Wave’s previous generation and far exceeding the number of qubits ever developed by D-Wave or any other quantum effort.

This is a major technological and scientific achievement that will allow significantly more complex computational problems to be solved than was possible on any previous quantum computer.

D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.” Every additional qubit doubles the search space of the processor. At 1000 qubits, the new processor considers 21000possibilities simultaneously, a search space which dwarfs the 2512 possibilities available to the 512-qubit D-Wave Two. ‪In fact, the new search space contains far more possibilities than there are ‪particles in the observable universe.

“For the high-performance computing industry, the promise of quantum computing is very exciting. It offers the potential to solve important problems that either can’t be solved today or would take an unreasonable amount of time to solve,” said Earl Joseph, IDC program vice president for HPC. “D-Wave is at the forefront of this space today with customers like NASA and Google, and this latest advancement will contribute significantly to the evolution of the Quantum Computing industry.”

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.
No comment yet.
Scooped by Dr. Stefan Gruenwald!

Rapidly Acidifying Arctic Ocean Threatens Many Species

Rapidly Acidifying Arctic Ocean Threatens Many Species | Amazing Science |

Parts of the Arctic Ocean within the next 10 years could reach levels of ocean acidification that would threaten the ability of marine animals to form shells, new research suggests.

Die-offs in such creatures could have ramifications up the food chain in some of the most productive fisheries in the world and provide a preview of what is in store for the rest of the world’s oceans down the road.

“The Arctic can be a great indicator” of future issues, oceanographer Jeremy Mathis, of the Pacific Marine Environmental Laboratory, said.

Ocean acidification is a process happening in tandem with the warming of the planet and is driven by the same human-caused increase of carbon dioxide in the atmosphere that is trapping excess heat. The oceans absorb much of that excess CO2, where it dissolves and reacts with water to form carbonic acid.

As CO2 emissions have continued to grow, so has the amount of carbonic acid in the oceans, decreasing their pH. The ocean generally has a pH of 8.2, making it slightly basic (a neutral pH is 7, while anything above is basic and anything below is acidic). An ocean that is becoming less basic is a problem for the creatures like shellfish and coral that depend on specific ocean chemistry to have enough of the mineral calcium carbonate to make their hard shells and skeletons.

Small snails the size of a human fingernail in polar coastal waters can react very quickly to increased acidity, with their shells dissolving. Such tiny creatures are often the linchpins of marine ecosystems, causing a domino effect up the food chain when they collapse. That’s a major concern in an area that has some of the globe’s most productive fisheries, especially the Bering Sea.

The polar oceans are particularly threatened by ocean acidification, as cold water is better at absorbing CO2 than warm water is. And in regions near the coast, this process is helped along by glacier melt and river runoff that also shift the water’s chemistry toward increased CO2 absorption.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Falling into a black hole may convert you into a hologram or you will hit a firewall of doom

Falling into a black hole may convert you into a hologram or you will hit a firewall of doom | Amazing Science |

In the movie Interstellar, the main character Cooper escapes from a black hole in time to see his daughter Murph in her final days. Some have argued that the movie is so scientific that it should be taught in schools. In reality, many scientists believe that anything sent into a black hole would probably be destroyed. But a new study suggests that this might not be the case after all. The research says that, rather than being devoured, a person falling into a black hole would actually be absorbed into a hologram — without even noticing. The paper challenges a rival theory stating that anybody falling into a black hole hits a “firewall” and is immediately destroyed.

Forty years ago, Stephen Hawking shocked the scientific establishment with his discovery that black holes aren’t really black. Classical physics implies that anything falling through the horizon of a black hole can never escape. But Hawking showed that black holes continually emit radiation once quantum effects are taken into account. Unfortunately, for typical astrophysical black holes, the temperature of this radiation is far lower than that of the cosmic microwave background, meaning detecting them is beyond current technology.

Hawking’s calculations are perplexing. If a black hole continually emits radiation, it will continually lose mass—eventually evaporating. Hawking realised that this implied a paradox: if a black hole can evaporate, the information about it will be lost forever. This means that even if we could measure the radiation from a black hole we could never figure out it was originally formed. This violates an important rule of quantum mechanics that states information cannot be lost or created.

Another way to look at this is that Hawking radiation poses a problem with determinism for black holes. Determinism implies that the state of the universe at any given time is uniquely determined from its state at any other time. This is how we can trace its evolution both astronomically and mathematically though quantum mechanics.

This means that the loss of determinism would have to arise from reconciling quantum mechanics with Einstein’s theory of gravity – a notoriously hard problem and ultimate goal for many physicists. Black hole physics provides a test for any potential quantum gravity theory. Whatever your theory is, it must explain what happens to the information recording a black hole’s history.

It took two decades for scientists to come up with a solution. They suggested that the information stored in a black hole is proportional to its surface area (in two dimensions) rather than its volume (in three dimensions). This could be explained by quantum gravity, where the three dimensions of space could be reconstructed from a two-dimensional world without gravity – much like a hologram. Shortly afterwards, string theory, the most studied theory of quantum gravity, was shown to be holographic in this way.

Using holography we can describe the evaporation of the black hole in the two-dimensional world without gravity, for which the usual rules of quantum mechanics apply. This process is deterministic, with small imperfections in the radiation encoding the history of the black hole. So holography tells us that information is not lost in black holes, but tracking down the flaw in Hawking’s original arguments has been surprisingly hard.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

A 100-Year Debate About the Eardrum Comes to an End

A 100-Year Debate About the Eardrum Comes to an End | Amazing Science |

Evolutionary biologists have long wondered why the eardrum—the membrane that relays sound waves to the inner ear—looks in humans and other mammals remarkably like the one in reptiles and birds. Did the membrane and therefore the ability to hear in these groups evolve from a common ancestor? Or did the auditory systems evolve independently to perform the same function, a phenomenon called convergent evolution? A recent set of experiments performed at the University of Tokyo and the RIKEN Evolutionary Morphology Laboratory in Japan resolves the issue.

When the scientists genetically inhibited lower jaw development in both fetal mice and chickens, the mice formed neither eardrums nor ear canals. In contrast, the birds grew two upper jaws, from which two sets of eardrums and ear canals sprouted. The results, published in Nature Communications, confirm that the middle ear grows out of the lower jaw in mammals but emerges from the upper jaw in birds—all supporting the hypothesis that the similar anatomy evolved independently in mammals and in reptiles and birds. (Scientific American is part of Springer Nature.) Fossils of auditory bones had supported this conclusion as well, but eardrums do not fossilize and so could not be examined directly.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Scientists have managed to build a fully functional neuron by using organic bioelectronics

Scientists have managed to build a fully functional neuron by using organic bioelectronics | Amazing Science |

Scientists at Karolinska Institutet have managed to build a fully functional neuron by using organic bioelectronics. This artificial neuron contain no ‘living’ parts, but is capable of mimicking the function of a human nerve cell and communicate in the same way as our own neurons do.

Neurons are isolated from each other and communicate with the help of chemical signals, commonly called neurotransmitters or signal substances. Inside a neuron, these chemical signals are converted to an electrical action potential, which travels along the axon of  the neuron until it reaches the end. Here at the synapse, the electrical signal is converted to the release of chemical signals, which via diffusion can relay the signal to the next nerve cell.

To date, the primary technique for neuronal stimulation in human cells is based on electrical stimulation. However, scientists at the Swedish Medical Nanoscience Centre (SMNC) at Karolinska Institutet's Department of Neuroscience in collaboration with collegues at Linköping University, have now created an organic bioelectronic device that is capable of receiving chemical signals, which it can then relay to human cells.

“Our artificial neuron is made of conductive polymers and it functions like a human neuron”, says lead investigator Agneta Richter-Dahlfors, professor of cellular microbiology. “The sensing component of the artificial neuron senses a change in chemical signals in one dish, and translates this into an electrical signal. This electrical signal is next translated into the release of the neurotransmitter acetylcholine in a second dish, whose effect on living human cells can be monitored.“

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Physicists Create Microscope for Fermions

Physicists Create Microscope for Fermions | Amazing Science |

For the past twenty years, physicists have studied ultracold atomic gases of the two classes of particles: fermions (electrons, protons, neutrons, quarks, atoms) and bosons.

In 2009, physicists at Harvard University devised a microscope that successfully imaged individual bosons in a tightly spaced optical lattice.

The second boson microscope was created by scientists at the Max Planck Institute of Quantum Optics in Germany in 2010. These microscopes revealed, in unprecedented detail, the behavior of bosons under strong interactions. However, no one had yet developed a comparable microscope for fermions.

The new technique developed by Prof Martin Zwierlein and his colleagues at MIT uses two laser beams trained on a cloud of fermionic atoms in an optical lattice. The two beams, each of a different wavelength, cool the cloud, causing individual fermions to drop down an energy level, eventually bringing them to their lowest energy states – cool and stable enough to stay in place. At the same time, each fermion releases light, which is captured by the microscope and used to image the fermion’s exact position in the lattice – to an accuracy better than the wavelength of light.

With the new technique, Prof Zwierlein’s team was able to cool and image over 95% of the fermionic atoms making up a cloud of potassium gas. "An intriguing result from the technique appears to be that it can keep fermions cold even after imaging. That means I know where they are, and I can maybe move them around with a little tweezer to any location, and arrange them in any pattern I’d like,” said Prof Zwierlein, who is the senior author on the study published in the journal Physical Review Letters.

No comment yet.
Scooped by Dr. Stefan Gruenwald!

Water splitter produces clean-burning hydrogen fuel 24/7

Water splitter produces clean-burning hydrogen fuel 24/7 | Amazing Science |

In an engineering first, Stanford University scientists have invented a low-cost water splitter that uses a single catalyst to produce both hydrogen and oxygen gas 24 hours a day, seven days a week. The researchers believe that the device, described in anopen-access study published today (June 23) in Nature Communications, could provide a renewable source of clean-burning hydrogen fuel for transportation and industry.

“We have developed a low-voltage, single-catalyst water splitter that continuously generates hydrogen and oxygen for more than 200 hours, an exciting world-record performance,” said study co-author Yi Cui, an associate professor of materials science and engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.

Hydrogen has long been promoted as an emissions-free alternative to gasoline. But most commercial-grade hydrogen is made from natural gas — a fossil fuel that contributes to global warming. So scientists have been trying to develop a cheap and efficient way to extract pure hydrogen from water.

A conventional water-splitting device consists of two electrodes submerged in a water-based electrolyte. A low-voltage current applied to the electrodes drives a catalytic reaction that separates molecules of H2O, releasing bubbles of hydrogen on one electrode and oxygen on the other.

In these devices, each electrode is embedded with a different catalyst, typically platinum and iridium, two rare and costly metals. But in 2014, Stanford chemist Hongjie Dai developed a water splitter made of inexpensive nickel and iron that runs on an ordinary 1.5-volt battery.

In conventional water splitters, the hydrogen and oxygen catalysts often require different electrolytes with different pH — one acidic, one alkaline — to remain stable and active. “For practical water splitting, an expensive barrier is needed to separate the two electrolytes, adding to the cost of the device,” Wang explained.

“Our water splitter is unique because we only use one catalyst, nickel-iron oxide, for both electrodes,” said graduate student Haotian Wang, lead author of the study. “This bi-functional catalyst can split water continuously for more than a week with a steady input of just 1.5 volts of electricity. That’s an unprecedented water-splitting efficiency of 82 percent at room temperature.”

Wang and his colleagues discovered that nickel-iron oxide, which is cheap and easy to produce, is actually more stable than some commercial catalysts made of expensive precious metals. The key to making a single catalyst possible was to use lithium ions to chemically break the metal oxide catalyst into smaller and smaller pieces. That “increases its surface area and exposes lots of ultra-small, interconnected grain boundaries that become active sites for the water-splitting catalytic reaction,” Cui said. “This process creates tiny particles that are strongly connected, so the catalyst has very good electrical conductivity and stability.”

No comment yet.