To get a 3-D shape from an ordinary polynomial takes a little doing. The first step is to run the polynomial dynamically — that is, to iterate it by feeding each output back into the polynomial as the next input. One of two things will happen: either the values will grow infinitely in size, or they’ll settle into a stable, bounded pattern. To keep track of which starting values lead to which of those two outcomes, mathematicians construct the Julia set of a polynomial. The Julia set is the boundary between starting values that go off to infinity and values that remain bounded below a given value. This boundary line — which differs for every polynomial — can be plotted on the complex plane, where it assumes all manner of highly intricate, swirling, symmetric fractal designs.

If you shade the region bounded by the Julia set, you get the filled Julia set. If you use scissors and cut out the filled Julia set, you get the first piece of the surface of the eventual 3-D shape. To get the second, DeMarco and Lindsey wrote an algorithm. That algorithm analyzes features of the original polynomial, like its degree (the highest number that appears as an exponent) and its coefficients, and outputs another fractal shape that DeMarco and Lindsey call the “planar cap.”

“The Julia set is the base, like the southern hemisphere, and the cap is like the top half,” DeMarco said. “If you glue them together you get a shape that’s polyhedral.” The algorithm was Thurston’s idea. When he suggested it to Lindsey in 2010, she wrote a rough version of the program. She and DeMarco improved on the algorithm in their work together and “proved it does what we think it does,” Lindsey said. That is, for every filled Julia set, the algorithm generates the correct complementary piece.

The filled Julia set and the planar cap are the raw material for constructing a 3-D shape, but by themselves they don’t give a sense of what the completed shape will look like. This creates a challenge. When presented with the six faces of a cube laid flat, one could intuitively know how to fold them to make the correct 3-D shape. But, with a less familiar two-dimensional surface, you’d be hard-pressed to anticipate the shape of the resulting 3-D object.

“There’s no general mathematical theory that tells you what the shape will be if you start with different types of polygons,” Lindsey said. Mathematicians have precise ways of defining what makes a shape a shape. One is to know its curvature. Any 3-D object without holes has a total curvature of exactly 4π; it’s a fixed value in the same way any circular object has exactly 360 degrees of angle. The shape — or geometry — of a 3-D object is completely determined by the way that fixed amount of curvature is distributed, combined with information about distances between points. In a sphere, the curvature is distributed evenly over the entire surface; in a cube, it’s concentrated in equal amounts at the eight evenly spaced vertices.